Marine Biotechnology

, Volume 7, Issue 2, pp 95–103

Development of Molecular Probes for Dinophysis (Dinophyceae) Plastid: A Tool to Predict Blooming and Explore Plastid Origin

  • Yoshiaki Takahashi
  • Kiyotaka Takishita
  • Kazuhiko Koike
  • Tadashi Maruyama
  • Takeshi Nakayama
  • Atsushi Kobiyama
  • Takehiko Ogata


Dinophysis are species of dinoflagellates that cause diarrhetic shellfish poisoning. We have previously reported that they probably acquire plastids from cryptophytes in the environment, after which they bloom. Thus monitoring the intracellular plastid density in Dinophysis and the source cryptophytes occurring in the field should allow prediction of Dinophysis blooming. In this study the nucleotide sequences of the plastid-encoded small subunit ribosomal RNA gene and rbcL (encoding the large subunit of RuBisCO) from Dinophysis spp. were compared with those of cryptophytes, and genetic probes specific for the Dinophysis plastid were designed. Fluorescent in situ hybridization (FISH) showed that the probes bound specifically to Dinophysis plastids. Also, FISH on collected nanoplankton showed the presence of probe-hybridized eukaryotes, possibly cryptophytes with plastids identical to those of Dinophysis. These probes are useful not only as markers for plastid density and activity of Dinophysis, but also as tools for monitoring cryptophytes that may be sources of Dinophysis plastids.


Dinophysis fluorescent in situ hybridization (FISH) shellfish poisoning cryptophyte plastid 


  1. Barbrook, A.C., Howe, C.J. 2000Minicircular plastid DNA in the dinoflagellate Amphidinium operculatumMol Gen Genet263152158CrossRefPubMedGoogle Scholar
  2. Deane, J.A., Strachan, I.M., Saunders, G.W., Hill, D.R.A., McFadden, G.I. 2002Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentationJ Phycol3812361244CrossRefGoogle Scholar
  3. Fukuyo, Y. 1997


    Okaichi, T. eds. Akashio-no-kagaku2Kouseisha KouseikakuTokyo, Japan274278
    Google Scholar
  4. Geider, R.J., Gunter, P.A. 1989Evidence for the presence of phycoerythrin in Dinophysis norvegica, a pink dinoflagellateBr Phycol J24195198Google Scholar
  5. Hackett, J.D., Maranda, L., Yoon, H.S., Bhattacharya, D. 2003Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae)J Phycol41348357Google Scholar
  6. Hallegraeff, G.M., Lucas, I.A.N. 1988The marine dinoflagellate genus Dinophysis (Dinophyceae): photosynthetic, neritic and non-photosynthetic, oceanic speciesPhycologia272542Google Scholar
  7. Hewes, C.D., Mitchell, B.G., Moisan, T.A., Vernet, M., Reid, F.M.H. 1998The phycobilin signatures of chloroplasts from three dinoflagellate species: a microanalytical study of Dinophysis caudata, D. fortii, and D. acuminata (Dinophysiales, Dinophyceae)J Phycol34945951CrossRefGoogle Scholar
  8. Hoef-Emden, K., Marin, B., Melkonian, M. 2002Nuclear and nucleomorph SSU rDNA phylogeny in the cryptophyta and the evolution of cryptophyte diversityJ Mol Evol55161179CrossRefPubMedGoogle Scholar
  9. Ishimaru, T., Inoue, H., Fukuyo, Y, Ogata, T., Kodama, M. 1988

    Culture of Dinophysis fortii and D. acuminata with the cryptomonad Plagioselmis sp

    Aibara, K.Kumagai, S.Ohtsubo, K.Yoshizawa, T. eds. Mycotoxins and Phycotoxins, Special Issue No. 1Japanese Assoc MycotoxicolTokyo, Japan1920
    Google Scholar
  10. Jacobson, D.M., Andersen, R.A. 1994The discovery of mixotrophy in photosynthesis species of Dinophysis (Dinophyceae): light and electron microscopical observations of food vacuoles in Dinophysis acuminata, D. norvegica and two heterotrophic dinophysoid dinoflagellatesPhycologia3397110Google Scholar
  11. Kimura, M. 1980A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequencesJ Mol Evol16111120PubMedGoogle Scholar
  12. Koike, K. 2002Mixotrophy of Dinophysis fortii: a strategy for growth in various environmental conditionsFish Sci68529532CrossRefGoogle Scholar
  13. Koike, K., Koike, K., Takagi, M., Ogata, T., Ishimaru, T. 2000Evidence of phagotrophy in Dinophysis fortii (Dinophysiales, Dinophyceae), a dinoflagellate that causes diarrhetic shellfish poisoning (DSP)Phycolog Res48121124CrossRefGoogle Scholar
  14. Koike, K., Otobe, H., Takagi, M., Yoshida, T, Ogata, T., Ishimaru, T. 2001Recent occurrences of Dinophysis fortii (Dinophyceae) in the Okkirai Bay, Sanriku, Northern Japan, and related environmental factorsJ Oceanogr57165175CrossRefGoogle Scholar
  15. Larsen, J. 1992

    Endocytobiotic consortia with dinoflagellate hosts

    Reisser, W. eds. Algae, Fungi, Viruses, InteractionsExplored BiopressBristol, U.K.427442
    Google Scholar
  16. Laval-Peuto, M. 1992

    Plastidic protozoa

    Reisser, W. eds. Algae, Fungi, Viruses, InteractionsExplored BiopressBristol, U.K.471499
    Google Scholar
  17. Lee, J.S., Igarashi, T., Fraga, S., Dahl, E., Hovgaard, P., Yasumoto, T. 1989Determination of diarrhetic shellfish toxins in various dinoflagellate speciesJ Appl Phycol1147152Google Scholar
  18. Lessard, E., Swift, E. 1986Dinoflagellates from the North Atlantic classified as phototrophic or heterotrophic by epifluorescence microscopyJ Plankton Res812091215Google Scholar
  19. Lucas, I.A.N., Vesk, M. 1990The fine structure of two photosynthetic species of Dinophysis (Dinophysiales, Dinophyceae)J Phycol26345357CrossRefGoogle Scholar
  20. Miller, P.E., Scholin, C. A. 2000On detection of Pseudo-nitzschia (Bacillariophyceae) species using whole cell hybridization: sample fixation and stabilityJ Phycol36238250CrossRefGoogle Scholar
  21. Posada, D., Crandali, K.A. 1998MODELTEST: testing the model of DNA substitutionBioinformatics14817818CrossRefPubMedGoogle Scholar
  22. Rappe, M.S., Suzuki, M.T., Vergin, K.L., Giovannoni, S.J. 1998Phylogenetic diversity of ultraplankton plastid small-subunit rRNA genes recovered in environmental nucleic acid samples from the Pacific and Atlantic coasts of the United StatesAppl Environ Microbiol64294303PubMedGoogle Scholar
  23. Rehnstam-Holm, A., Godhe, A., Anderson, D.M. 2002Molecular studies of Dinophysis (Dinophyceae) species from Sweden and North AmericaPhycologia41348357Google Scholar
  24. Saitou, N., Nei, M. 1987The neighbor-joining method: a new method for reconstructing phylogenetic treesMol Biol Evol4406425PubMedGoogle Scholar
  25. Schnepf, E., Elbrächter, M. 1988Cryptophycean-like double-membrane bounded chloroplast in the dinoflagellate, Dinophysis Ehrenb: evolutionary, phylogenetic and toxicological implicationsBot Acta101196203Google Scholar
  26. Schnepf, E., Elbrächter, M. 1992Nutritional strategy in dinoflagellates: a review with emphasis on cell biological aspectsEur J Protistol28324Google Scholar
  27. Schnepf, E., Elbrächter, M. 1999Dinophyte chloroplasts and phylogeny: a reviewGrana388197Google Scholar
  28. Takishita, K., Nakano, K., Uchida, A. 2000Origin of the plastid in the anomalously pigmented dinoflagellate Gymnodinium mikimotoi (Gymnodiniales Dinophyta) as inferred from phylogenetic analysis based on the gene encoding the large subunit of form I-type RuBisCOPhycol Res488589CrossRefGoogle Scholar
  29. Takishita, K., Koike, K., Maruyama, T., Ogata, T. 2002Molecular evidence for plastid robbery (kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoningProtist153293302PubMedGoogle Scholar
  30. Tengs, T, Dahlberg, O.J., Shalchian-Tabrizi, K., Klaveness, D., Rudi, K., Delwiche, C.F., Jakobsen, K.S. 2000Phylogenetic analyses indicate that the 19′ hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte originMol Biol Evol17718729PubMedGoogle Scholar
  31. Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res2246734680PubMedCrossRefGoogle Scholar
  32. Vesk, M., Dibbayawan, T.P., Vesk, P.A. 1996Immunogold localization of phycoerythrin in chloroplasts of Dinophysis acuminata and D. fortii (Dinophysiales, Dinophyta)Phycologia35234238Google Scholar
  33. Yasumoto, T., Oshima, Y., Sugawara, W., Fukuyo, Y., Oguri, H., Igarashi, T., Fujita, N. 1980Identification of Dinophysis fortii as the causative organism of diarrhetic shellfish poisoningNippon Suisan Gakkaishi4614051411Google Scholar
  34. Yasumoto, T., Murata, M., Oshima, Y., Sano, M., Matsumoto, G.K., Clardy, L. 1985Diarrhetic shellfish toxinsTetrahedron4110191025CrossRefGoogle Scholar
  35. Zhang, Z., Green, B.R., Cavalier-Smith, T. 1999Single gene circles in dinoflagellate chloroplast genomesNature400155159CrossRefPubMedGoogle Scholar
  36. Zhang, Z., Green, B.R., Cavalier-Smith, T. 2000Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastidsJ Mol Evol512640PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yoshiaki Takahashi
    • 1
  • Kiyotaka Takishita
    • 2
  • Kazuhiko Koike
    • 1
  • Tadashi Maruyama
    • 2
  • Takeshi Nakayama
    • 3
  • Atsushi Kobiyama
    • 1
  • Takehiko Ogata
    • 1
  1. 1.School of Fisheries SciencesKitasato UniversitySanriku, OfunatoJapan
  2. 2.Marine Biotechnology InstituteHeita KamaishiJapan
  3. 3.Institute of Biological SciencesUniversity of TsukubaTennoh-dai, TsukubaJapan
  4. 4.Extremobiosphere Research Center, Research Program for Marine Biology and EcologyJapan Agency for Marine-Earth Science and TechnologyNatsushimaJapan

Personalised recommendations