Marine Biotechnology

, Volume 7, Issue 2, pp 128–133 | Cite as

Low Temperature Stimulates Cell Enlargement and Intracellular Calcification of Coccolithophorids

  • Joy M. Sorrosa
  • Manami Satoh
  • Yoshihiro Shiraiwa


Temperature effect on growth, cell size, calcium uptake activity, coccolith production was studied in coccolith-producing haptophytes, Emiliania huxleyi (Lohmann) Hay & Mohler (strain EH2) and Gephyrocapsa oceanica Kamptner (strain GO1) (Coccolithophorales, Prymnesiophyceae). E. huxleyi grew at a wider temperature range (10°–25°C), while G. oceanica growth was limited to warmer temperatures (20°–25°C). Cell size was inversely correlated with temperature. At low temperature, the enlargement of chloroplasts and cells and the stimulation of coccolith production were morphologically confirmed under fluorescent and polarization microscopes, respectively. 45 Ca uptake by E. huxleyi at 10°C was greatly increased after a 5-day lag and exceeded that at 20°C. These results clearly showed that low temperature suppressed coccolithophorid growth but induced cell enlargement and as stimulated the intracellular calcification that produces coccoliths.


calcification calcium uptake cell size coccolithophorids cold stress temperature effect 



The authors are grateful for the help extended by Dr. Koji Iwamoto of the University of Tsukuba, Japan. This study was supported in part by the Salt Foundation Science Research, Tokyo (grant 0025) in 2000 and a Grant-in-Aid for Scientific Research (A) by the Japanese Ministry of Education, Science, Sport and Culture (grant 14209012) in 2002.


  1. Anning, T., Nimer, N., Merrett, J., Brownlee, C. 1996Costs and benefits of calcification in coccolithophoridsJ Mar Syst94556CrossRefGoogle Scholar
  2. Balch, W.M., Eilpatrick, K. 1995Calcification rates in the equatorial Pacific along 140°WDeep-Sea Res43971993Google Scholar
  3. Danbara, A., Shiraiwa, Y. 1999The requirement of selenium for the growth of marine coccolithophorids, Emiliania huxleyi and Helladosphaera sp. (Prymnesiophyceae)Plant Cell Physiol40762766Google Scholar
  4. Fritz, J.J., Balch, W.M. 1996A light limited continuous culture study of Emiliania huxleyi: determination of coccolith detachment and its relevance to cell sinkingJ Expt Mar Biol Ecol207127147CrossRefGoogle Scholar
  5. Harris, R.P. 1996Coccolithophorid dynamics: The European Emiliania huxleyi programme, EHUXJ Mar Syst9111CrossRefGoogle Scholar
  6. Holligan, P.M. 1992Do marine phytoplankton influence global climate?:Falkowski, P.G.Woodhead, A.D. eds. Primary Productivity and Biogeochemical Cycles in the SeaPlenum PressNew York, N.Y.487501Google Scholar
  7. Karwath, B., Janofske, D., Tietjen, F., Willems, H. 2000Temperature effects on growth and cell size in the marine calcareaous dinoflagellate Thoracospaera heimii. Mar Micropal394351CrossRefGoogle Scholar
  8. Linschooten, C., Bleijswijk, J.D.L., Emburg, P., Vrind, J.P.M., Kempers, E.S., Westbroek, P., Vrind-de Jong, E.W. 1991Role of the light-dark cycle and medium composition on the production of coccoliths by Emiliania huxleyi (Haptophyceae)J Phycol28286CrossRefGoogle Scholar
  9. Marlowe, I.T., Brassell, S.C., Eglinton, G, Green, J.C. 1984Long chain unsaturated ketones and esters in living algae and marine sedimentsOrg Geochem6135141CrossRefGoogle Scholar
  10. Nimer, N.A., Merrett, M.J. 1993Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbonNew Phytol123673677Google Scholar
  11. Passche, E. 1969Light-dependent coccolith formation in the two forms of Coccolithus pelagicusArchiv Mikrobiologie67199208CrossRefGoogle Scholar
  12. Paasche, E. 1998Roles of nitrogen and phosphorous in coccolith formation in Emiliania huxleyi (Prymnesiophyceae)Euro J Phycol333342CrossRefGoogle Scholar
  13. Paasche, E. 2002A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactionsPhycologia40503529CrossRefGoogle Scholar
  14. Roth, P. 1994Distribution of coccoliths in oceanic sedimentsWinter, A.Siesser, W.G. eds. Coccolithophores,Cambridge University PressCambridge, U.K.199218Google Scholar
  15. Saitoh S., Shiga N., Mizobata K., Miyamura T., Imai K., Toratani M. (2001). The observation of coccolithophore bloom in the southeastern Bering Sea, in summer 2000. Presented at the Spring Meeting of the Oceanographic Society of Japan. Sawada, K., Handa, N., Shiraiwa, Y., Danbara, A., and Montani, S. (1996). Long-chain alkenones and alkyl alkenoates in the coastal and pelagic sediments of the northwest North Pacific, with special reference to the reconstruction of Emiliania huxleyi and Gephyrocapsa oceanica ratios. Org Geochem 24:751–764Google Scholar
  16. Sekino, K., Shiraiwa, Y. 1994Accumulation and utilization of dissolved inorganic carbon by a marine unicellular coccolithophorids, Emiliania huxleyi. Plant Cell Physiol35353361Google Scholar
  17. Sekino, K., Kobayashi, H., Shiraiwa, Y. 1996Role of coccoliths in the untilization of inorganic carbon by a marine unicellular coccolithophorid, Emiliania huxleyi: a survey using intact cells and protoplastsPlant Cell Physiol37123127Google Scholar
  18. Shin, K.H., Tanaka, N., Harada, N., Marty, J.C. 2002Production and turnover rates of C37 akenones in the eastern Bering Sea: implication for the mechanism of a long duration of Emiliania huxleyi bloomProg Oceanogr55113129CrossRefGoogle Scholar
  19. Shiraiwa, Y. 2003Physiological regulation of carbon fixation in the photosynthesis and calcification of coccolithophoridsComp Biochem and Physiol136775783CrossRefGoogle Scholar
  20. Shiraiwa, Y., Hatano-Sugimoto, Y., Satoh, M. 2003Regulation of intracellular calcification and algal growth by nutrient supply in coccolithophoridsKobayashi, I.Ozawa, H. eds. Biomineralization (BIOM 2001): Formation; Diversity, Evolution and Application, KanagawaTokai University PressTokyo241246Google Scholar
  21. Sikes, C.S., Roer, R.D., Wilbur, K.M. 1980Photosynthesis and coccolith formation: inorganic carbon sources and net inorganic reaction of depositionLimnol Oceanogr25248261CrossRefGoogle Scholar
  22. Steinmetz, J.C. 1994Sedimentation of coccolithophoresWinter, A.Siesser, W.G. eds. CoccolithophoresCambridge University PressCambridge, U.K.179197Google Scholar
  23. Wal, P., Vrind, J.P.M., Vrind-de long, E.W., Borman, A.H. 1987Incompletenes of the coccosphere as a possible stimulus for coccolith formation in Pleurochrysis carterae (Prymnesiophyceae)J Phycol23218221Google Scholar
  24. Volkman, J.K., Eglinton, G., Corner, E.D.S., Sargent, J.R. 1980Novel unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyiDouglas, A.G.Maxwell, J.R. eds. Advances in Organic Geochemistry 1979Pergamom PressOxford, U.K219227Google Scholar
  25. Winter, A., Jordan, R.W., Roth, P.H. 1994Biogeography of living coccolithophores in ocean watersWinter, ASiesser, W.G. eds. Coccolithophores,Cambridge, University PressCambridge, U.K.161177Google Scholar
  26. Yamamoto, M., Shiraiwa, Y, Inouye, I. 2000Physiological responses of lipids in Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyceae) to growth status and their implications for alkenone plaeothermometryOrg Geochem31799811CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Joy M. Sorrosa
    • 1
  • Manami Satoh
    • 1
  • Yoshihiro Shiraiwa
    • 1
  1. 1.Functional Biosciences, Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations