Advertisement

Marine Biotechnology

, Volume 5, Issue 3, pp 302–310 | Cite as

Sustainable, High-Yielding Outdoor Mass Cultures of Chaetoceros muelleri var. subsalsum and Isochrysis galbana in Vertical Plate Reactors

  • C. W. Zhang
  • A. Richmond
Article

Abstract

Continuous cultures of Chaetoceros muelleri and Isochrysis galbana were grown outdoors in flat plate-glass reactors in which light-path length (LPL) varied from 5 to 30 cm. High daily productivity (13 to 16 g cell mass per square meter of irradiated reactor surface) for long periods of time was obtained in reactors in which the optical path as well as cell density were optimized. 'Twenty centimeters was the optimal LPL, yielding the highest areal productivity of cell mass (g m−2d−1), eicosapentaenoic acid, and docosahexaenoic acid, which was identical with that previously found for polysaccharide production of Porphyridium and not far from the optimal LPL affecting maximal productivity in Nannochloropsis species. Relating the energy impinging on a given reactor surface area to the appropriate number of cells showed that the most efficient light dose per cell, obtained with the 20-cm LPL reactor, was approximately 2.5 times lower than the light dose available per cell in the 5-cm LPL reactor, in which a significant decline in areal cell density accompanied the lowest areal output of cell mass. The most effective harvesting regimen was in the range of 10% to 15% of culture volume harvested daily and replaced with fresh growth medium, resulting in a sustainable culture density of 24 × 106 and 28 × 106 cells/ml of C. muelleri and I. galbana, respectively.

Keywords

Chaetoceros mulleri Isochrysis galbana plate reactor light-path length eicosapentaenoic acid docosahexaenoic acid 

References

  1. 1.
    Cohen, Z., Reungjitchachawali, M., Siangdung, W., Tanticharoen, M. l993Production and partial purification of γ-linolenic acid and some pigments from Spirulina platensis.J Appl Phycol24312328Google Scholar
  2. 2.
    Enright, C.T., Newkirk, G.F., Craigie, J.S., Castell, J.D. 1986Growth of juvenile Ostrea edulis L. fed Chaetoceros gracilis Schutt of varied chemical composition.J Exp Mar Biol Ecol961526CrossRefGoogle Scholar
  3. 3.
    Faiman, D., Feuermann, D., Ibbetson, P., Zemel, A. 1992Data processing for the Negev Radiation Survey: Second Year. Report No. RD-03-92.JerusalemIsrael Ministry of Energy52Google Scholar
  4. 4.
    Gitelson, A., Hu, Q., Richmond, A. 1996Photic volume in photobioreactors SUPporting ultrahigh population densities of the photoautotroph Spirulina platensis.Appl Environ Microbiol6215701573Google Scholar
  5. 5.
    Guillard, R.R.L., Ryther, J.H. 1962Studies on marine planktonic diatoms; Cyclotella nana Hustedt, and Detonula confervacea (Clve) Gran.Can J Microbiol8229239Google Scholar
  6. 6.
    Harrison, P.J., Davis, C.O. 1979The use of outdoor phytoplankton continuous cultures to analyze factors influencing species selection.J Exp Mar Biol Ecol419123CrossRefGoogle Scholar
  7. 7.
    Hartig, P., Grobbelaar, J.U., Soeder, C.J., Groeneweg, J. 1988On the mass culture of microalgae: a real density as an important factor for achieving maximal productivity.Biomass15211221CrossRefGoogle Scholar
  8. 8.
    Hofftnan Y. (1999). Long term culture of Nannochloropsis sp. in open raceway ponds. Int Conf Appl Algology. Abstracts, 133Google Scholar
  9. 9.
    Hu, Q., Guterman, H., Richmond, A. 1996Physiological characteristics of Spirulina platensis (Cyanobacteria) cultured at ultrahigh cell densities.J Phycol3210661073Google Scholar
  10. 10.
    Hu, Q., Hu, Z.Y., Cohen, Z., Richmond, A. 1997Enhancement of eicosapentaenoic acid (EPA) and γ-linolenic acid (GLA) production by manipulating cell density in outdoor cultures of Monodus subterraneous (Eustingmatophyte) and Spirulina platensis (Cyanobacteria).Eur J Phycol318186Google Scholar
  11. 11.
    Hu, Q., Zarmi, Y., Richmond, A. 1998aCombined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria).Eur J Phycol33165171Google Scholar
  12. 12.
    Hu, Q., Faiman, D., Richmond, A. 1998bOptimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors.J Ferm Bioeng85230236Google Scholar
  13. 13.
    Hu, Q., Kurano, N., Kawachi, M., Iwasaki, I., Miyachi, S. 1998Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor.Appl Microbiol Biotechnol49655662CrossRefGoogle Scholar
  14. 14.
    Imada, N., Kobayashi, K., Isomura, K., Saito, H., Kimura, S., Fahara, K., Oshima, Y. 1991Isolation and identification of an autoinhibitor produced by Skeletonema costatum.Nippon Suisan Gakkaishi5819871992Google Scholar
  15. 15.
    Jeffery, S.W., Garland, C.D., Brown, M.R. 1989Microalgae in Australian Mariculture.Clayton, M.N.King, R.J. eds. Marine BotanyMelbourne, AustraliaLongmasn-Cheshire400414Google Scholar
  16. 16.
    Johansen, J.R., Barclay, W.R., Nagle, N. 1990Physiological variability within ten strains of Chaetoceros muelleri (Bacillariophyceae).J Phycol26271278Google Scholar
  17. 17.
    Kaplan, D., Cohen, Z., Abeliovich, A. 1986Optimal growth conditions for Isochrysis galbana.Biomass93748CrossRefGoogle Scholar
  18. 18.
    Langdon, C.J., Waldock, M.J. 1981The effect of algal and artificial diel on the growth and fatty acid composition of Crassostrea gigas spat.J Mar Biol Assoc UK61431448Google Scholar
  19. 19.
    Lubzens, E., Gibson, O., Zmora, O., Sukenik, A. 1995Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture.Aquaculture133295310CrossRefGoogle Scholar
  20. 20.
    Mandalam, R.K., Palsson, B. 1995 Chlorella vulgaris (chlorellaceae) does not secrete autoinhibitors at high cell densities.Am J Bot82955963Google Scholar
  21. 21.
    Myers, J., Graham, J.R. 1959On the mass culture of algae, II yield as a function of cell concentration under continuous sunlight irradiance.Plant Physiol34345352Google Scholar
  22. 22.
    Napolitano, G.E., Ackman, R.G., Ratnayake, W.M.N. 1990Fatty acid composition of three cultured algal species (Isochrysis galbana, Chaetoceros gracilis and Chaetoceros calcitrans) used as food for bivalve larvae.J World Aquacult Soc21122130Google Scholar
  23. 23.
    Pohl, P., Zurheide, F. 1979Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors.Hoppe, H.A.Levring, T.Tanaka, T. eds. Marine Pharmaceutical Science,New York, N.Y.D. Gruyter473523Google Scholar
  24. 24.
    Renaud, S.M., Parry, D.L., Luong-Van, T., Kuo, C., Padovan, A., Sammy, N. 1991Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture.J ApplPhycol34353Google Scholar
  25. 25.
    Richmond, A. 1996Efficient utilization of high irradiance for production of photoautotrophic cell mass: a survey.J Appl Phycol8381387Google Scholar
  26. 26.
    Richmond, A. 2000Microalgal biotechnology at the turn of the millennium: a personal view.J Appl Phycol12441451Google Scholar
  27. 27.
    Richmond, A., Zou, N. 1999Efficient utilization of high photon irradiance for mass production of photoautotrophic microorganisms.J Appl Phycol11123127CrossRefGoogle Scholar
  28. 28.
    Simon, C.M. 1978The culture of the diatom Chaetoceros gracilis and its use as a food for penaeid protozoal larvae.Aquaculture14105113Google Scholar
  29. 29.
    Singh, S., Arad, S., Richmond, A. 2000Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors.J Appl Phycol12269275CrossRefGoogle Scholar
  30. 30.
    Whyte, J.N.C. 1987Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves.Aquaculture60231241Google Scholar
  31. 31.
    Zhang, C.W., Zemora, O., Kopel, A., Richmond, A. 2001An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae).Aquaculture1953549CrossRefGoogle Scholar
  32. 32.
    Zou, N., Richmond, A. 1999Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp.J Biotechnol70351356CrossRefGoogle Scholar
  33. 33.
    Zou, N., Zhang, C.W., Cohen, Z., Richmond, A. 2000Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae).Eur J Phycol35127133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  1. 1.Microalgal Biotechnology Laboratory, The Albert Katz Department of Dryland Biotechnologies, The Jacob Blaustein Institute for Desert ResearchBen-Gurion University of the Negev, Sede-Boker Campus 84990Israel
  2. 2.College of Life SciencesNanjing Normal University, No. 122 NingHai Road, Nanjing City 210097China

Personalised recommendations