Pathology and Host Immune Evasion During Human Leptospirosis: a Review

  • Voon Kin ChinEmail author
  • R. Basir
  • S. A. Nordin
  • M. Abdullah
  • Z. Sekawi


Human leptospirosis is considered as one of the most widespread and potentially fatal zoonotic diseases that causes high mortality and morbidity in the endemic regions of tropical and subtropical countries. The infection can arise from direct or indirect exposure of human through contaminated environment that contains leptospires or animal reservoirs that carry leptospires. The clinical manifestations during human leptospirosis ranges from asymptomatic, mild infections to severe and life-threatening complications involving multi-organ failures with kidneys, lungs and liver severely affected. Despite much efforts have been put in to unravel the pathogenesis during human leptospirosis, it remains obscure to which extent the host factors or the pathogen itself contribute towards the pathogenesis. Host innate immunity, especially, polymorphonuclear neutrophils and complement system are involved in the first line of defense during human leptospirosis. However, pathogenic Leptospira has acquired diverse evasion strategies to evade from host immunity and establish infection in infected hosts. Hence, in this review, we focus on organs pathology during human leptospiral infection and host evasion strategies employed by Leptospira. A profound understanding on leptospiral immunity and how Leptospira subvert the immune system may provide new insights on the development of therapeutic regimens against this species in future.


Leptospirosis Complement system Host immune evasion Pathology 


Funding Information

This study was financially supported by the Long-Term Research Grant Scheme (LRGS) by the Ministry of Higher Education Malaysia (UPM/700-2/1/LRGS/5526400). They also provided infrastructure support for literature search.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. Abreu PA, Seguro AC, Canale D, da Silva AM, Do RB Matos L, Gotti TB, Monaris D, de Jesus DA, Vasconcellos SA, de Brito T, Magaldi AJ (2017) Lp25 membrane protein from pathogenic Leptospira spp. is associated with rhabdomyolysis and oliguric acute kidney injury in a guinea pig model of leptospirosis. PLoS Negl Trop Dis 11:e0005615CrossRefGoogle Scholar
  2. Adler B, Lo M, Seemann T, Murray GL (2011) Pathogenesis of leptospirosis: the influence of genomics. Vet Microbiol 153:73–81CrossRefGoogle Scholar
  3. Amamura TA, Fraga TR, Vasconcellos SA, Barbosa AS, Isaac L (2017) Pathogenic Leptospira secreted proteases target the membrane attack complex: a potential role for thermolysin in complement inhibition. Front Microbiol 8:958CrossRefGoogle Scholar
  4. Andrade L, Rodrigues AC Jr, Sanches TR (2007) Leptospirosis leads to dysregulation of sodium transporters in the kidney and lung. Am J Physiol Renal Physiol 292:F586–F592CrossRefGoogle Scholar
  5. Arean VM (1962) The pathologic anatomy and pathogenesis of fatal human leptospirosis (Weil’s disease). Am J Pathol 40:393–423Google Scholar
  6. Barbosa AS, Abreu PA, Neves FO, Atzingen MV, Watanabe MM, Vieira ML, Morais ZM, Vasconcellos SA, Nascimento AL (2006) A newly identified leptospiral adhesin mediates attachment to laminin. Infect Immun 74:6356–6364CrossRefGoogle Scholar
  7. Barbosa AS, Abreu PA, Vasconcellos SA, Morais ZM, Gonçales AP, Silva AS, Daha MR, Isaac L (2009) Immune evasion of Leptospira species by acquisition of human complement regulator C4BP. Infect Immun 77:1137–1143CrossRefGoogle Scholar
  8. Barbosa AS, Monaris D, Silva LB, Morais ZM, Vasconcellos SA, Cianciarullo AM, Isaac L, Abreu PA (2010) Functional characterization of LcpA, a surface-exposed protein of Leptospira spp. that binds the human complement regulator C4BP. Infect Immun 78:3207–3216CrossRefGoogle Scholar
  9. Barnett JK, Barnett D, Bolin CA, Summers TA, Wagar EA, Cheville NF, Hartskeerl RA, Haake DA (1999) Expression and distribution of leptospiral outer membrane components during renal infection of hamsters. Infect Immun 67:853–861Google Scholar
  10. Barthel D, Schindler S, Zipfel PF (2012) Plasminogen is a complement inhibitor. J Biol Chem 287:18831–18842CrossRefGoogle Scholar
  11. Bernardi FD, Ctenas B, da Silva LF, Nicodemo AC, Saldiva PH, Dolhnikoff M, Mauad T (2012) Immune receptors and adhesion molecules in human pulmonary leptospirosis. Hum Pathol 43:1601–1610CrossRefGoogle Scholar
  12. Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM, Lovett MA, Levett PN, Gilman RH, Willig MR, Gotuzzo E, Vinetz JM (2003) Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3:757–771CrossRefGoogle Scholar
  13. Blom AM, Hallstrom T, Riesbeck K (2009) Complement evasion strategies of pathogens acquisition of inhibitors and beyond. Mol Immunol 46:2808e17CrossRefGoogle Scholar
  14. Bloom AM (2002) Structural and functional studies of complement inhibitor C4b binding protein. Biochem Soc Trans 30:978–982CrossRefGoogle Scholar
  15. Brenner DJ, Kaufmann AF, Sulzer KR, Steigerwalt AG, Rogers FC, Weyant RS (1999) Further determination of DNA relatedness between serogroups and serovars in the family Leptospiraceae with a proposal for Leptospira alexanderi sp. nov. and four new Leptospira genomospecies. Int J Syst Evol Microbiol 49:839–858Google Scholar
  16. Castiblanco-Valencia MM, Fraga TR, Silva LB, Monaris D, Abreu PA, Strobel S, Józsi M, Isaac L, Barbosa AS (2012) Leptospiral immunoglobulin-like proteins interact with human complement regulators factor H, FHL-1, FHR-1, and C4BP. J Infect Dis 205:995–1004CrossRefGoogle Scholar
  17. Castiblanco-Valencia MM, Fraga TR, Pagotto AH, de Toledo Serrano SM, Abreu PA, Barbosa AS, Isaac L (2016) Plasmin cleaves fibrinogen and the human complement proteins C3b and C5 in the presence of Leptospira interrogans proteins: a new role of LigA and LigB in invasion and complement immune evasion. Immunobiology 221:679–689CrossRefGoogle Scholar
  18. Cerqueira TB, Athanazio DA, Spichler AS, Seguro AC (2008) Renal involvement in leptospirosis – new insights into pathophysiology and treatment. Braz J Infect Dis 12:248–252CrossRefGoogle Scholar
  19. Chang MY, Cheng YC, Hsu SH, Ma TL, Chou LF, Hsu HH, Tian YC, Chen YC, Sun YJ, Hung CC, Pan RL (2016) Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae. Sci Rep 6:27838CrossRefGoogle Scholar
  20. Chin VK, Lee TY, Lim WF, Wan Shahriman YWY, Syafinaz AN, Zamberi S, Maha A (2018) Leptospirosis in human: biomarkers in host immune responses. Microbiol Res 207:108–115CrossRefGoogle Scholar
  21. Choi JY, Choi YS, Kim SJ, Son EJ, Choi HS, Yoon JH (2007) Interleukin-1beta suppresses epithelial sodium channel beta-subunit expression and ENaC-dependent fluid absorption in human middle ear epithelial cells. Eur J Pharmacol 567:19–25CrossRefGoogle Scholar
  22. Choy HA (2012) Multiple activities of LigB potentiate virulence of Leptospira interrogans: inhibition of alternative and classical pathways of complement. PLoS One 7:e41566CrossRefGoogle Scholar
  23. Cinco M, Banfi E (1983a) Activation and bactericidal activity of complement by leptospires. Zentralbl Bakteriol Mikrobiol Hyg A 1:261–265Google Scholar
  24. Cinco M, Banfi E (1983b) Interactions between human polymorphonuclear leukocytes and one strain of pathogenic Leptospira (L. interrogans sp.) and one of saprophytic Leptospira (L. biflexa sp.). FEMS Microbiol Lett 9:51–54CrossRefGoogle Scholar
  25. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, Stein C, Abela-Ridder B, Ko AI (2015) Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 9:e0003898CrossRefGoogle Scholar
  26. Covic A, Goldsmith DJ, Gusbeth-Tatomir P, Seica A, Covic M (2003) A retrospective 5-year study in Moldova of acute renal failure due to leptospirosis: 58 cases and a review of the literature. Nephrol Dial Transplant 18:1128–1134CrossRefGoogle Scholar
  27. da Silva LB, Miragaia LS, Breda LC, Abe CM, Schmidt MC, Moro AM, Monaris D, Conde JN, Józsi M, Isaac L, Abreu PA (2015) Pathogenic Leptospira species acquire factor H and vitronectin via the surface protein LcpA. Infect Immun 83:888–897CrossRefGoogle Scholar
  28. Dagenais A, Frechette R, Yamagata Y, Yamagata T, Carmel JF, Clermont ME, Brochiero E, Massé C, Berthiaume Y (2004) Downregulation of ENaC activity and expression by TNF-alpha in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 286:L301–L311CrossRefGoogle Scholar
  29. Fraga TR, Courrol DD, Castiblanco-Valencia MM, Hirata IY, Vasconcellos SA, Juliano L, Barbosa AS, Isaac L (2013) Immune evasion by pathogenic Leptospira strains: the secretion of proteases that directly cleave complement proteins. J Infect Dis 209:876–886CrossRefGoogle Scholar
  30. Fraga TR, Isaac L, Barbosa AS (2016) Complement evasion by pathogenic Leptospira. Front Immunol 7:623CrossRefGoogle Scholar
  31. Gancheva GI (2009) Liver involvement in leptospirosis. Population 2006:8Google Scholar
  32. Ganoza CA, Matthias MA, Collins-Richards D, Brouwer KC, Cunningham CB, Segura ER, Gilman RH, Gotuzzo E, Vinetz JM (2006) Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic Leptospira. PLoS Med 3:e308CrossRefGoogle Scholar
  33. Haake DA, Levett PN (2015) Leptospirosis in humans. In: Leptospira and leptospirosis. Springer, Berlin, Heidelberg, pp 65–97Google Scholar
  34. Harpel PC, Sullivan R, Chang TS (1989) Binding and activation of plasminogen on immobilized immunoglobulin G. Identification of the plasmin-derived fab as the plasminogen-binding fragment. J Biol Chem 264:616e24Google Scholar
  35. Humphryes PC, Weeks ME, AbuOun M, Thomson G, Núñez A, Coldham NG (2014) Vaccination with leptospiral outer membrane lipoprotein LipL32 reduces kidney invasion of Leptospira interrogans serovar Canicola in hamsters. Clin Vaccine Immunol 12:CVI-00719Google Scholar
  36. Johnson RC, Muschel LH (1966) Antileptospiral activity of serum I. Normal and Immune Serum. J Bacteriol 91:1403–1409Google Scholar
  37. Kiatboonsri S, Vathesatogit P, Charoenpan P (1995) Adult respiratory distress syndrome in Thai medical patients. Southeast Asian J Trop Med Public Health 26:774–780Google Scholar
  38. Ko AI, Goarant C, Picardeau M (2009) Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7:736–747CrossRefGoogle Scholar
  39. Lambris JD, Ricklin D, Geisbrecht BV (2008) Complement evasion by human pathogens. Nat Rev Microbiol 6:132e42CrossRefGoogle Scholar
  40. Lehmann JS, Matthias MA, Vinetz JM, Fouts DE (2014) Leptospiral pathogenomics. Pathogens 3:280–308CrossRefGoogle Scholar
  41. Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14:296–326CrossRefGoogle Scholar
  42. Levett PN, Morey RE, Galloway RL, Steigerwalt AG (2006) Leptospira broomii sp. nov., isolated from humans with leptospirosis. Int J Syst Evol Microbiol 56:671–673CrossRefGoogle Scholar
  43. Luks AM, Lakshminarayanan S, Hirschmann JV (2003) Leptospirosis presenting as diffuse alveolar hemorrhage: case report and literature review. Chest 123:639–643CrossRefGoogle Scholar
  44. Matiash VI (1999) The clinical aspects of acute liver failure in leptospirosis. Lik Sprava 5:43–46Google Scholar
  45. Matthias MA, Ricaldi JN, Cespedes M, Diaz MM, Galloway RL, Saito M, Steigerwalt AG, Patra KP, Ore CV, Gotuzzo E, Gilman RH (2008) Human leptospirosis caused by a new, antigenically unique Leptospira associated with a Rattus species reservoir in the Peruvian Amazon. PLoS Negl Trop Dis 2:e213CrossRefGoogle Scholar
  46. Meri T, Murgia R, Stefanel P (2005a) Regulation of complement activation at the C3-level by serum resistant leptospires. Microb Pathog 39:139–147CrossRefGoogle Scholar
  47. Meri T, Murgia R, Stefanel P, Meri S, Cinco M (2005b) Regulation of complement activation at the C3-level by serum resistant leptospires. Microb Pathog 39:139–147CrossRefGoogle Scholar
  48. Miyahara S, Saito M, Kanemaru T, Villanueva SY, Gloriani NG, Yoshida SI (2014) Destruction of the hepatocyte junction by intercellular invasion of Leptospira causes jaundice in a hamster model of Weil’s disease. Int J Exp Pathol 95:271–281CrossRefGoogle Scholar
  49. Morrison WI, Wright NG (1976) Canine leptospirosis: an immunopathological study of interstitial nephritis due to Leptospira canicola. J Pathol 120:83–89CrossRefGoogle Scholar
  50. Murgia R, Garcia R, Cinco M (2002) Leptospires are killed in vitro by both oxygen-dependent and-independent reactions. Infect Immun 70:7172–7175CrossRefGoogle Scholar
  51. Narayanavari SA, Sritharan M, Haake DA, Matsunaga J (2012) Multiple leptospiral sphingomyelinases (or are there?). Microbiology 158:1137–1146CrossRefGoogle Scholar
  52. Nicodemo AC, Duarte MI, Alves VA, Takakura CF, Santos RT, Nicodemo EL (1997) Lung lesions in human leptospirosis: microscopic, immunohistochemical, and ultrastructural features related to thrombocytopenia. Am J Trop Med Hyg 56:181–187CrossRefGoogle Scholar
  53. O’Neil KM, Rickman LS, Lazarus AA (1991) Pulmonary manifestations of leptospirosis. Rev Infect Dis 13:705–709CrossRefGoogle Scholar
  54. Palaniappan RU, Ramanujam S, Chang YF (2007) Leptospirosis: pathogenesis, immunity, and diagnosis. Curr Opin Infect Dis 20:284–292CrossRefGoogle Scholar
  55. Petersen AM, Boye K, Blom J, Schlichting P, Krogfelt KA (2001) First isolation of leptospira fainei serovar hurstbridge from two human patients with Weil’s syndrome. J Med Microbiol 50:96–100CrossRefGoogle Scholar
  56. Preissner KT, Seiffert D (1998) Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thromb Res 89:1–21CrossRefGoogle Scholar
  57. Rooijakkers SH, van Strijp JA (2007) Bacterial complement evasion. Mol Immunol 44:23e32CrossRefGoogle Scholar
  58. Sambri V, Marangoni A, Giacani L, Gennaro R, Murgia R, Cevenini R, Cinco M (2002) Comparative in vitro activity of five cathelicidin-derived synthetic peptides against Leptospira, Borrelia and Treponema pallidum. J Antimicrob Chemother 50:895–902CrossRefGoogle Scholar
  59. Scharrig E, Carestia A, Ferrer MF, Cédola M, Pretre G, Drut R, Picardeau M, Schattner M, Gómez RM (2015) Neutrophil extracellular traps are involved in the innate immune response to infection with Leptospira. PLoS Negl Trop Dis 9:e0003927CrossRefGoogle Scholar
  60. Schmid GP, Steere AC, Kornblatt AN, Kaufmann AF, Moss CW, Johnson RC, Hovind-Hougen K, Brenner DJ (1986) Newly recognized Leptospira species (Leptospira inadai serovar Lyme) isolated from human skin. J Clin Microbiol 24:484–486Google Scholar
  61. Scocchi M, Romeo D, Cinco M (1993) Antimicrobial activity of two bactenecins against spirochetes. Infect Immun 61:3081–3083Google Scholar
  62. Silva JJ, Dalston MO, Carvalho JE, Setúbal S, Oliveira JM, Pereira MM (2002) Clinicopathological and immunohistochemical features of the severe pulmonary form of leptospirosis. Rev Soc Bras Med Trop 35:395–399CrossRefGoogle Scholar
  63. Siqueira GH, Atzingen MV, de Souza GO, Vasconcellos SA, Nascimento AL (2016) Leptospira interrogans Lsa23 protein recruits plasminogen, factor H and C4BP from normal human serum and mediates C3b and C4b degradation. Microbiology 162:295–308CrossRefGoogle Scholar
  64. Siqueira GH, de Souza GO, Heinemann MB, Vasconcellos SA, Nascimento AL (2017) The role of Lsa23 to mediate the interaction of Leptospira interrogans with the terminal complement components pathway. Microb Pathog 112:182–189CrossRefGoogle Scholar
  65. Slack AT, Kalambaheti T, Symonds ML, Dohnt MF, Galloway RL, Steigerwalt AG, Chaicumpa W, Bunyaraksyotin G, Craig S, Harrower BJ, Smythe LD (2008) Leptospira wolffii sp. nov., isolated from a human with suspected leptospirosis in Thailand. Int J Syst Evol Microbiol 58:2305–2308CrossRefGoogle Scholar
  66. Slack AT, Khairani-Bejo S, Symonds ML, Dohnt MF, Galloway RL, Steigerwalt AG, Bahaman AR, Craig S, Harrower BJ, Smythe LD (2009) Leptospira kmetyi sp. nov., isolated from an environmental source in Malaysia. Int J Syst Evol Microbiol 59:705–708CrossRefGoogle Scholar
  67. Souza NM, Vieira ML, Alves IJ, de Morais ZM, Vasconcellos SA, Nascimento AL (2012) Lsa30, a novel adhesin of Leptospira interrogans binds human plasminogen and the complement regulator C4bp. Microb Pathog 53:125–134CrossRefGoogle Scholar
  68. Stevenson B, Choy HA, Pinne M, Rotondi ML, Miller MC, DeMoll E, Kraiczy P, Cooley AE, Creamer TP, Suchard MA, Brissette CA (2007) Leptospira interrogans endostatin-like outer membrane proteins bind host fibronectin, laminin and regulators of complement. PLoS One 2:e1188CrossRefGoogle Scholar
  69. Sznajder JI (2001) Alveolar edema must be cleared for the acute respiratory distress syndrome patient to survive. Am J Respir Crit Care Med 163:1293–1294CrossRefGoogle Scholar
  70. Sznajder JI, Ridge KM, Harris ZL, Olivera W, Curiel C, Rutschman DH (1994) Alveolar type II cell Na, K-ATPase is upregulated during mechanical ventilation-induced pulmonary edema. Chest 105:116SCrossRefGoogle Scholar
  71. Thaipadungpanit J, Wuthiekanun V, Chierakul W, Smythe LD, Petkanchanapong W, Limpaiboon R, Apiwatanaporn A, Slack AT, Suputtamongkol Y, White NJ, Feil EJ (2007) A dominant clone of Leptospira interrogans associated with an outbreak of human leptospirosis in Thailand. PLoS Negl Trop Dis 1:e56CrossRefGoogle Scholar
  72. Torgerson PR, Hagan JE, Costa F, Calcagno J, Kane M, Martinez-Silveira MS, Goris MG, Stein C, Ko AI, Abela-Ridder B (2015) Global burden of leptospirosis: estimated in terms of disability adjusted life years. PLoS Negl Trop Dis 9:e0004122CrossRefGoogle Scholar
  73. Truccolo J, Serais O, Merien F (2001) Following the course of human leptospirosis: evidence of a critical threshold for the vital prognosis using a quantitative PCR assay. FEMS Microbiol Lett 204:317–321CrossRefGoogle Scholar
  74. van Lookeren Campagne M, Wiesmann C, Brown EJ (2007) Macrophage complement receptors and pathogen clearance. Cell Microbiol 9:2095e102CrossRefGoogle Scholar
  75. Vadász I, Morty RE, Kohstall MG, Olschewski A, Grimminger F, Seeger W, Ghofrani HA (2005) Oleic acid inhibits alveolar fluid reabsorption: a role in acute respiratory distress syndrome? Am J Respir Crit Care Med 171:469–479CrossRefGoogle Scholar
  76. Verma A, Hellwage J, Artiushin S, Zipfel PF, Kraiczy P, Timoney JF, Stevenson B (2006) LfhA, a novel factor H-binding protein of Leptospira interrogans. Infect Immun 74:2659–2666CrossRefGoogle Scholar
  77. Verma A, Brissette CA, Bowman AA, Shah ST, Zipfel PF, Stevenson B (2010) Leptospiral endostatin-like protein A is a bacterial cell surface receptor for human plasminogen. Infect Immun 78:2053–2059CrossRefGoogle Scholar
  78. Vieira ML, Vasconcellos SA, Goncales AP, de Morais ZM, Nascimento AL (2009) Plasminogen acquisition and activation at the surface of leptospira species lead to fibronectin degradation. Infect Immun 77:4092e101CrossRefGoogle Scholar
  79. Vieira ML, Atzingen MV, Oliveira TR, Oliveira R, Andrade DM, Vasconcellos SA, Nascimento AL (2010) In vitro identification of novel plasminogen-binding receptors of the pathogen Leptospira interrogans. PloS One 5:e11259Google Scholar
  80. Vieira ML, de Morais ZM, Vasconcellos SA, Romero EC, Nascimento AL (2011) In vitro evidence for immune evasion activity by human plasmin associated to pathogenic Leptospira interrogans. Microb Pathog 51:360–365CrossRefGoogle Scholar
  81. Vieira ML, Teixeira AF, Pidde G, Ching AT, Tambourgi DV, Nascimento AL, Herwald H (2018) Leptospira interrogans outer membrane protein LipL21 is a potent inhibitor of neutrophil myeloperoxidase. Virulence 9:414–425CrossRefGoogle Scholar
  82. Vijayachari P, Sugunan AP, Shriram AN (2008) Leptospirosis: an emerging global public health problem. J Biosci 33:557–569CrossRefGoogle Scholar
  83. Wang BO, Sullivan JA, Sullivan GW (1984) Role of specific antibody in interaction of leptospires with human monocytes and monocyte-derived macrophages. Infect Immun 46:809–813Google Scholar
  84. Wang H, Wu Y, Ojcius DM, Yang XF, Zhang C, Ding S, Yan J (2012) Leptospiral hemolysins induce proinflammatory cytokines through Toll-like receptor 2-and 4-mediated JNK and NF-kappaB signaling pathways. PLoS One 7:e42266CrossRefGoogle Scholar
  85. Wolff DG, Castiblanco-Valencia MM, Abe CM, Monaris D, Morais ZM, Souza GO, Vasconcellos SA, Isaac L, Abreu PA, Barbosa AS (2013) Interaction of Leptospira elongation factor Tu with plasminogen and complement factor H: a metabolic leptospiral protein with moonlighting activities. PLoS One 8:e81818CrossRefGoogle Scholar
  86. Yamagata T, Yamagata Y, Nishimoto T, Hirano T, Nakanishi M, Minakata Y, Ichinose M, Dagenais A, Berthiaume Y (2009) The regulation ofamiloride-sensitive epithelial sodium channels by tumor necrosis factor-alpha in injured lungs and alveolar type II cells. Respir Physiol Neurobiol 166:16–23CrossRefGoogle Scholar
  87. Yang CW, Wu MS, Pan MJ, Hsieh WJ, Vandewalle A, Huang CC (2002) The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells. J Am Soc Nephrol 13:2037–2045CrossRefGoogle Scholar
  88. Zipfel PF, Mihlan M, Skerka C (2007a) The alternative pathway of complement: a pattern recognition system. Adv Exp Med Biol 598:80e92Google Scholar
  89. Zipfel PF, Wurzner R, Skerka C (2007b) Complement evasion of pathogens: common strategies are shared by diverse organisms. Mol Immunol 44:3850e7Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Biosciences, Faculty of Health and Medical SciencesTaylor’s UniversitySubang JayaMalaysia
  2. 2.I Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaUPM SerdangMalaysia
  3. 3.Department of Human Anatomy, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaUPM SerdangMalaysia
  4. 4.Department of Pathology, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations