Advertisement

International Microbiology

, Volume 22, Issue 3, pp 377–390 | Cite as

High diversity and novelty of Actinobacteria isolated from the coastal zone of the geographically remote young volcanic Easter Island, Chile

  • Ignacio Sottorff
  • Jutta Wiese
  • Johannes F. ImhoffEmail author
Original Article

Abstract

Easter Island is an isolated volcanic island in the Pacific Ocean. Despite the extended knowledge about its origin, flora, and fauna, little is known about the bacterial diversity inhabiting this territory. Due to its isolation, Easter Island can be considered as a suitable place to evaluate microbial diversity in a geographically isolated context, what could shed light on actinobacterial occurrence, distribution, and potential novelty. In the present study, we performed a comprehensive analysis of marine Actinobacteria diversity of Easter Island by studying a large number of coastal sampling sites, which were inoculated into a broad spectrum of different culture media, where most important variations in composition included carbon and nitrogen substrates, in addition to salinity. The isolates were characterized on the basis of 16S ribosomal RNA gene sequencing and phylogenetic analysis. High actinobacterial diversity was recovered with a total of 163 pure cultures of Actinobacteria representing 72 phylotypes and 20 genera, which were unevenly distributed in different locations of the island and sample sources. The phylogenetic evaluation indicated a high degree of novelty showing that 45% of the isolates might represent new taxa. The most abundant genera in the different samples were Micromonospora, Streptomyces, Salinispora, and Dietzia. Two aspects appear of primary importance in regard to the high degree of novelty and diversity of Actinobacteria found. First, the application of various culture media significantly increased the number of species and genera obtained. Second, the geographical isolation is considered to be of importance regarding the actinobacterial novelty found.

Keywords

Easter Island Actinobacteria Pacific Ocean New taxa Polynesia 

Notes

Acknowledgments

We show our gratitude to the Centre for Molecular Biology at Kiel University (IKMB) for the DNA sequencing support. We also thank Tanja Rahn for technical assistance. We thank Prof. Ute Hentschel Humeida (GEOMAR Helmholtz Centre for Ocean Research Kiel) and Prof. Frank Sönnichsen (Institut für Organische Chemie at Christian-Albrechts-Universität zu Kiel) for their fruitful feedback for the present work. Finally, I.S. thanks Millaray Sierra for her support during the research.

Funding information

We thank the Deutscher Akademischer Austauschdienst (DAAD) and Helmholtz association for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S, Hentschel U (2010) Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes. Mar Drugs 8:399–412CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  3. Arango RA, Carlson CM, Currie CR, McDonald BR, Book AJ, Green F 3rd, Lebow NK, Raffa KF (2016) Antimicrobial activity of Actinobacteria isolated from the guts of subterranean termites. Environ Entomol 45:1415–1423CrossRefPubMedPubMedCentralGoogle Scholar
  4. Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11:566–576CrossRefPubMedGoogle Scholar
  5. Barnes SS, Matisoo-Smith E, Hunt TL (2006) Ancient DNA of the Pacific rat (Rattus exulans) from Rapa Nui (Easter Island). J Archaeol Sci 33:1536–1540CrossRefGoogle Scholar
  6. Casanova M, Salazar O, Seguel O, Luzio W (2013) Main features of Chilean soils. In: The soils of Chile. Springer Netherlands, Dordrecht, pp 25–97.  https://doi.org/10.1007/978-94-007-5949-7_2 CrossRefGoogle Scholar
  7. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2013) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cumsille A, Undabarrena A, González V, Claverías F, Rojas C, Cámara B (2017) Biodiversity of Actinobacteria from the South Pacific and the assessment of Streptomyces chemical diversity with metabolic profiling. Mar Drugs 15:286CrossRefPubMedCentralGoogle Scholar
  9. Dorador C, Busekow A, Vila I, Imhoff JF, Witzel K-P (2008) Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile. Extremophiles 12:405–414CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230CrossRefPubMedPubMedCentralGoogle Scholar
  11. Farris MH, Olson JB (2007) Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett Appl Microbiol 45:376–381CrossRefPubMedGoogle Scholar
  12. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470CrossRefPubMedPubMedCentralGoogle Scholar
  13. Glynn PW, Wellington GM, Riegl B, Olson DB, Borneman E, Wieters EA (2007) Diversity and biogeography of the scleractinian coral fauna of Easter Island (Rapa Nui). Pac Sci 61:67–90CrossRefGoogle Scholar
  14. Goodfellow M, Fiedler H-P (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek 98:119–142CrossRefPubMedGoogle Scholar
  15. Grau J (1996) Jubaea, the palm of Chile and Easter Island? Rapa Nui J 10:37–40Google Scholar
  16. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  17. Hopwood DA (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, Oxford, New YorkGoogle Scholar
  18. Hunt TL, Lipo CP (2006) Late colonization of Easter Island. Science 311:1603–1606CrossRefPubMedGoogle Scholar
  19. Jiang S, Sun W, Chen M, Dai S, Zhang L, Liu Y, Lee KJ, Li X (2007) Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp. Antonie Van Leeuwenhoek 92:405–416CrossRefPubMedGoogle Scholar
  20. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535CrossRefPubMedGoogle Scholar
  21. Kohn AJ, Lloyd MC (1973) Marine polychaete annelids of Easter Island. Int Rev Hydrobiol 58:691–712CrossRefGoogle Scholar
  22. Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, Fernandez-Guerra A, Jeanthon C, Rahav E, Ullrich M, Wichels A, Gerdts G, Polymenakou P, Kotoulas G, Siam R, Abdallah RZ, Sonnenschein EC, Cariou T, O’Gara F, Jackson S, Orlic S, Steinke M, Busch J, Duarte B, Caçador I, Canning-Clode J, Bobrova O, Marteinsson V, Reynisson E, Loureiro CM, Luna GM, Quero GM, Löscher CR, Kremp A, DeLorenzo ME, Øvreås L, Tolman J, LaRoche J, Penna A, Frischer M, Davis T, Katherine B, Meyer CP, Ramos S, Magalhães C, Jude-Lemeilleur F, Aguirre-Macedo ML, Wang S, Poulton N, Jones S, Collin R, Fuhrman JA, Conan P, Alonso C, Stambler N, Goodwin K, Yakimov MM, Baltar F, Bodrossy L, van de Kamp J, Frampton DMF, Ostrowski M, van Ruth P, Malthouse P, Claus S, Deneudt K, Mortelmans J, Pitois S, Wallom D, Salter I, Costa R, Schroeder DC, Kandil MM, Amaral V, Biancalana F, Santana R, Pedrotti ML, Yoshida T, Ogata H, Ingleton T, Munnik K, Rodriguez-Ezpeleta N, Berteaux-Lecellier V, Wecker P, Cancio I, Vaulot D, Bienhold C, Ghazal H, Chaouni B, Essayeh S, Ettamimi S, Zaid EH, Boukhatem N, Bouali A, Chahboune R, Barrijal S, Timinouni M, el Otmani F, Bennani M, Mea M, Todorova N, Karamfilov V, ten Hoopen P, Cochrane G, L’Haridon S, Bizsel KC, Vezzi A, Lauro FM, Martin P, Jensen RM, Hinks J, Gebbels S, Rosselli R, de Pascale F, Schiavon R, dos Santos A, Villar E, Pesant S, Cataletto B, Malfatti F, Edirisinghe R, Silveira JAH, Barbier M, Turk V, Tinta T, Fuller WJ, Salihoglu I, Serakinci N, Ergoren MC, Bresnan E, Iriberri J, Nyhus PAF, Bente E, Karlsen HE, Golyshin PN, Gasol JM, Moncheva S, Dzhembekova N, Johnson Z, Sinigalliano CD, Gidley ML, Zingone A, Danovaro R, Tsiamis G, Clark MS, Costa AC, el Bour M, Martins AM, Collins RE, Ducluzeau AL, Martinez J, Costello MJ, Amaral-Zettler LA, Gilbert JA, Davies N, Field D, Glöckner FO (2015) The ocean sampling day consortium. GigaScience 4:27CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  24. Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229CrossRefPubMedGoogle Scholar
  25. Mahmoud HM, Kalendar AA (2016) Coral-associated Actinobacteria: diversity, abundance, and biotechnological potentials. Front Microbiol 7:204PubMedPubMedCentralGoogle Scholar
  26. Maldonado LA, Stach JEM, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie Van Leeuwenhoek 87:11–18CrossRefPubMedGoogle Scholar
  27. Maldonado LA, Fragoso-Yáñez D, Pérez-García A, Rosellón-Druker J, Quintana ET (2009) Actinobacterial diversity from marine sediments collected in Mexico. Antonie Van Leeuwenhoek 95:111–120CrossRefPubMedGoogle Scholar
  28. Mauri M, Elli T, Caviglia G, Uboldi G, Azzi M (2017) RAWGraphs: a visualisation platform to create open outputs. In: Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, ACM, New York, pp 28:1-28:5Google Scholar
  29. Menzel P, Ng KL, Krogh A (2016) Fast and sensitive taxonomic classification for metagenomics with kaiju. Nat Commun 7:11257CrossRefPubMedPubMedCentralGoogle Scholar
  30. Miao V, Davies J (2010) Actinobacteria: the good, the bad, and the ugly. Antonie Van Leeuwenhoek 98:143–150CrossRefPubMedGoogle Scholar
  31. Miller AZ, Pereira MFC, Calaforra JM, Forti P, Dionísio A, Saiz-Jimenez C (2014) Siliceous speleothems and associated microbe-mineral interactions from Ana Heva lava tube in Easter Island (Chile). Geomicrobiol J 31:236–245CrossRefGoogle Scholar
  32. Montenegro Á, Avis C, Weaver A (2008) Modeling the prehistoric arrival of the sweet potato in Polynesia. J Archaeol Sci 35:355–367CrossRefGoogle Scholar
  33. Moraga J, Valle-Levinson A, Olivares J (1999) Hydrography and geostrophy around Easter Island. Deep-Sea Res I 46:715–731CrossRefGoogle Scholar
  34. Muscholl-Silberhorn A, Thiel V, Imhoff JF (2008) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microb Ecol 55:94–106CrossRefPubMedGoogle Scholar
  35. Nimaichand S, Devi AM, Tamreihao K, Ningthoujam DS, Li W-J (2015) Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India) and their antimicrobial activities. Front Microbiol 6:413CrossRefPubMedPubMedCentralGoogle Scholar
  36. Osorio C, Cantuarias V (1989) Vertical distribution of mollusks on the rocky intertidal of Easter Island. Pac Sci 43:302–315Google Scholar
  37. Parte AC (2014) LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616CrossRefPubMedGoogle Scholar
  38. Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189CrossRefPubMedGoogle Scholar
  39. Patin NV, Duncan KR, Dorrestein PC, Jensen PR (2016) Competitive strategies differentiate closely related species of marine actinobacteria. ISME J 10:478–490CrossRefPubMedGoogle Scholar
  40. Poussin C, Sierro N, Boué S, Battey J, Scotti E, Belcastro V, Peitsch MC, Ivanov NV, Hoeng J (2018) Interrogating the microbiome: experimental and computational considerations in support of study reproducibility. Drug Discov Today 23:1644–1657CrossRefPubMedGoogle Scholar
  41. QGIS Development Team (2018) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
  42. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CrossRefGoogle Scholar
  43. Rambaut A (2015) FigTree, a graphical viewer of phylogenetic trees (2007) http://tree.bio.ed.ac.uk/software/figtree
  44. Rehder HA (1980) The marine mollusks of Easter Island (Isla de Pascua) and Sala y Gómez. Smithsonian Inst Press, WashingtonCrossRefGoogle Scholar
  45. Sahl JW, Schupp JM, Rasko DA, Colman RE, Foster JT, Keim P (2015) Phylogenetically typing bacterial strains from partial SNP genotypes observed from direct sequencing of clinical specimen metagenomic data. Genome Med 7:52CrossRefPubMedPubMedCentralGoogle Scholar
  46. Santelices B, Abbott I (1987) Geographic and marine isolation: an assessment of the marine algae of Easter Island. Pac Sci 41:1–20Google Scholar
  47. Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff JF (2010) Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea. Appl Environ Microbiol 76:3702–3714CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sehgal SN (1998) Rapamune® (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 31:335–340CrossRefPubMedGoogle Scholar
  49. Seymour JR (2014) A sea of microbes: the diversity and activity of marine microorganisms. Microbiol Aust 35:183–187CrossRefGoogle Scholar
  50. Staufenberger T, Thiel V, Wiese J, Imhoff JF (2008) Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol Ecol 64:65–77CrossRefPubMedGoogle Scholar
  51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  52. Thaker MN, Waglechner N, Wright GD (2014) Antibiotic resistance-mediated isolation of scaffold-specific natural product producers. Nat Protoc 9:1469–1479CrossRefPubMedGoogle Scholar
  53. Varadaraj K, Skinner DM (1994) Denaturants or cosolvents improve the specificity of PCR amplification of a G + C-rich DNA using genetically engineered DNA polymerases. Gene 140:1–5CrossRefPubMedGoogle Scholar
  54. Vezina C, Kudelski A, Sehgal S (1975) Rapamycin (AY-22, 989), a new antifungal antibiotic. J Antibiot 28:721–726CrossRefPubMedGoogle Scholar
  55. Vezzoli L, Acocella V (2009) Easter Island, SE Pacific: an end-member type of hotspot volcanism. Geol Soc Am Bull 121:869–886CrossRefGoogle Scholar
  56. Wilmshurst JM, Hunt TL, Lipo CP, Anderson AJ (2011) High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proc Natl Acad Sci U S A 108:1815–1820CrossRefPubMedGoogle Scholar
  57. Yang Q, Franco CMM, Zhang W (2015) Sponge-associated actinobacterial diversity: validation of the methods of actinobacterial DNA extraction and optimization of 16S rRNA gene amplification. Appl Microbiol Biotechnol 99:8731–8740CrossRefPubMedGoogle Scholar
  58. Yuan C, Lei J, Cole J, Sun Y (2015) Reconstructing 16S rRNA genes in metagenomic data. Bioinformatics 31:i35–i43CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.GEOMAR Centre for Ocean Research Kiel, Marine MicrobiologyKielGermany
  2. 2.Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile

Personalised recommendations