House dust microbiome and human health risks

  • Yifan Shan
  • Weidong WuEmail author
  • Wei Fan
  • Tari Haahtela
  • Guicheng Zhang


People spend a lot of time indoors and the indoor microbiome is a major part of the environment that we are exposed to. However, awareness of the exposure to the indoor microbiome and its health effects remains poor. Outdoor environment (soil and air), indoor sources (ventilation, dampness and building materials), human occupants, and pets compose the indoor microbial community. It has been estimated that up to 500–1000 different species can be present in house dust. House dust is a major source and reservoir of indoor microbiome, which influences human microbiome and determines health and disease. Herein, we review the origins and the components of the fungal and bacterial communities in house dust and their possible effect on human health, in particular on allergic disorders, intestinal microbiome, and immune responses. We expect to lay a solid foundation for the further study on the mechanisms of how the house dust microbes interact with the host microbiome and the human immune system.


House dust microbiome Fungal community Bacterial community Allergic diseases Gut microbiome 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Adams RI, Miletto M, Taylor JW, Bruns TD (2013) Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J 7:1262–1273. CrossRefGoogle Scholar
  2. Adams RI, Miletto M, Lindow SE, Taylor JW, Bruns TD (2014) Airborne bacterial communities in residences: similarities and differences with fungi. PLoS One 9:e91283. CrossRefGoogle Scholar
  3. Adhikari A, Kettleson EM, Vesper S, Kumar S, Popham DL, Schaffer C, Indugula R, Chatterjee K, Allam KK, Grinshpun SA, Reponen T (2014) Dustborne and airborne Gram-positive and Gram-negative bacteria in high versus low ERMI homes. Sci Total Environ 482-483:92–99. CrossRefGoogle Scholar
  4. Alenius H, Pakarinen J, Saris O, Andersson MA, Leino M, Sirola K, Majuri ML, Niemelä J, Matikainen S, Wolff H, von Hertzen L, Mäkelä M, Haahtela T, Salkinoja-Salonen M (2009) Contrasting immunological effects of two disparate dusts - preliminary observations. Int Arch Allergy Immunol 149:81–90CrossRefGoogle Scholar
  5. Amend AS, Seifert KA, Samson R, Bruns TD (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A 107:13748–13753. CrossRefGoogle Scholar
  6. Andersen B, Frisvad JC, Sondergaard I, Rasmussen IS, Larsen LS (2011) Associations between fungal species and water-damaged building materials. Appl Environ Microbiol 77:4180–4188. CrossRefGoogle Scholar
  7. Andersson AM, Weiss N, Rainey F, Salkinoja-Salonen MS (1999) Dust-borne bacteria in animal sheds, schools and children’s day care centres. J Appl Microbiol 86:622–634. CrossRefGoogle Scholar
  8. Ayerst G (1969) The effects of moisture and temperature on growth and spore germination in some fungi. J Stored Prod Res 5:127–141. CrossRefGoogle Scholar
  9. Barberan A et al (2015a) The ecology of microscopic life in household dust. Proc Biol Sci 282:20151139. CrossRefGoogle Scholar
  10. Barberan A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, Fierer N (2015b) Continental-scale distributions of dust-associated bacteria and fungi. Proc Natl Acad Sci U S A 112:5756–5761. CrossRefGoogle Scholar
  11. Beguin H (1995) Mould biodiversity in homes II. Analysis of mattress dust. Aerobiologia 11:3–10. CrossRefGoogle Scholar
  12. Beguin H, Nolard N (1996) Prevalence of fungi in carpeted floor environment: analysis of dust samples from living-rooms, bedrooms, offices and school classrooms. Aerobiologia 12:113–120. CrossRefGoogle Scholar
  13. Bouillard L, Michel O, Dramaix M, Devleeschouwer M (2005) Bacterial contamination of indoor air, surfaces, and settled dust, and related dust endotoxin concentrations in healthy office buildings. Ann Agric Environ Med 12:187–192Google Scholar
  14. Braun-Fahrlander C et al (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347:869–877. CrossRefGoogle Scholar
  15. Chen YS, Jan RL, Lin YL, Chen HH, Wang JY (2010) Randomized placebo-controlled trial of lactobacillus on asthmatic children with allergic rhinitis. Pediatr Pulmonol 45:1111–1120. CrossRefGoogle Scholar
  16. Dannemiller KC, Mendell MJ, Macher JM, Kumagai K, Bradman A, Holland N, Harley K, Eskenazi B, Peccia J (2014) Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24:236–247. CrossRefGoogle Scholar
  17. Dannemiller KC, Gent JF, Leaderer BP, Peccia J (2016) Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air 26:179–192. CrossRefGoogle Scholar
  18. Dannemiller KC, Weschler CJ, Peccia J (2017) Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air 27:354–363. CrossRefGoogle Scholar
  19. Debarry J, Hanuszkiewicz A, Stein K, Holst O, Heine H (2010) The allergy-protective properties of Acinetobacter lwoffii F78 are imparted by its lipopolysaccharide. Allergy 65:690–697. CrossRefGoogle Scholar
  20. Douwes J, Zuidhof A, Doekes G, van der Zee S, Wouters I, Boezen HM, Brunekreef B (2000) (1 -> 3)-beta-D-glucan and endotoxin in house dust and peak flow variability in children. Am J Respir Crit Care Med 162:1348–1354. CrossRefGoogle Scholar
  21. Eder W, von Mutius E (2004) Hygiene hypothesis and endotoxin: what is the evidence? Curr Opin Allergy Clin Immunol 4:113–117CrossRefGoogle Scholar
  22. Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WOCM, Braun-Fahrländer C, Heederik D, Piarroux R, von Mutius E (2011) Exposure to environmental microorganisms and childhood asthma. N Engl J Med 364:701–709. CrossRefGoogle Scholar
  23. Ege MJ, Mayer M, Schwaiger K, Mattes J, Pershagen G, van Hage M, Scheynius A, Bauer J, von Mutius E (2012) Environmental bacteria and childhood asthma. Allergy 67:1565–1571. Google Scholar
  24. Fujimura KE et al (2010) Man’s best friend? The effect of pet ownership on house dust microbial communities. J Allergy Clin Immunol 126:410–412, 412 e411-413. CrossRefGoogle Scholar
  25. Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC, Boushey HA, Zoratti E, Ownby D, Lukacs NW, Lynch SV (2014) House dust exposure mediates gut microbiome lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A 111:805–810. CrossRefGoogle Scholar
  26. Gliniewicz A et al (2003) German cockroaches (Blattella Germanica L.) as a potential source of pathogens causing nosocomial infections. Indoor Built Environ.
  27. Goyert SM, Ferrero E, Rettig WJ, Yenamandra AK, Obata F, Le Beau MM (1988) The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Science 239:497–500CrossRefGoogle Scholar
  28. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Makela MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 109:8334–8339. CrossRefGoogle Scholar
  29. Hanson B, Zhou Y, Bautista EJ, Urch B, Speck M, Silverman F, Muilenberg M, Phipatanakul W, Weinstock G, Sodergren E, Gold DR, Sordillo JE (2016) Characterization of the bacterial and fungal microbiome in indoor dust and outdoor air samples: a pilot study. Environ Sci Processes Impacts 18:713–724. CrossRefGoogle Scholar
  30. Heldal KK, Halstensen AS, Thorn J, Eduard W, Halstensen TS (2003) Airway inflammation in waste handlers exposed to bioaerosols assessed by induced sputum. Eur Respir J 21:641–645CrossRefGoogle Scholar
  31. Hospodsky D, Qian J, Nazaroff WW, Yamamoto N, Bibby K, Rismani-Yazdi H, Peccia J (2012) Human occupancy as a source of indoor airborne bacteria. PLoS One 7:e34867. CrossRefGoogle Scholar
  32. Hospodsky D, Yamamoto N, Nazaroff WW, Miller D, Gorthala S, Peccia J (2015) Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children’s classrooms. Indoor Air 25:641–652. CrossRefGoogle Scholar
  33. Iossifova YY, Reponen T, Bernstein DI, Levin L, Kalra H, Campo P, Villareal M, Lockey J, Hershey GKK, LeMasters G (2007) House dust (1-3)-beta-D-glucan and wheezing in infants. Allergy 62:504–513. CrossRefGoogle Scholar
  34. Jaakkola JJK, Hwang BF, Jaakkola MS (2010) Home dampness and molds as determinants of allergic rhinitis in childhood: a 6-year, population-based cohort study. Am J Epidemiol 172:451–459. CrossRefGoogle Scholar
  35. Kaarakainen P, Rintala H, Vepsalainen A, Hyvarinen A, Nevalainen A, Meklin T (2009) Microbial content of house dust samples determined with qPCR. Sci Total Environ 407:4673–4680. CrossRefGoogle Scholar
  36. Kabesch M (2006) A glitch in the switch? Of endotoxin, CD14, and allergy. Am J Respir Crit Care Med 174:365–366. CrossRefGoogle Scholar
  37. Karvala K, Toskala E, Luukkonen R, Lappalainen S, Uitti J, Nordman H (2010) New-onset adult asthma in relation to damp and moldy workplaces. Int Arch Occup Environ Health 83:855–865. CrossRefGoogle Scholar
  38. Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM, Bohannan BJM, Brown GZ, Green JL (2012) Architectural design influences the diversity and structure of the built environment microbiome. ISME J 6:1469–1479. CrossRefGoogle Scholar
  39. Khoo SK, Mäkelä M, Chandler D, Schultz EN, Jamieson SE, Goldblatt J, Haahtela T, LeSouëf P, Zhang G (2016) No simple answers for the Finnish and Russian Karelia allergy contrast: methylation of CD14 gene. Pediatr Allergy Immunol 27:721–727. CrossRefGoogle Scholar
  40. Korpi A, Pasanen AL, Pasanen P, Kalliokoski P (1997) Microbial growth and metabolism in house dust. Int Biodeterior Biodegrad 40:19–27CrossRefGoogle Scholar
  41. Korthals M, Ege M, Lick S, von Mutius E, Bauer J (2008) Occurrence of Listeria spp. in mattress dust of farm children in Bavaria. Environ Res 107:299–304. CrossRefGoogle Scholar
  42. Laubach CA (1916) Spore-bearing bacteria in dust. J Bacteriol 1:493Google Scholar
  43. Macher JM (2001) Review of methods to collect settled dust and isolate culturable microorganisms. Indoor Air 11:99–110CrossRefGoogle Scholar
  44. Marsh DG, Neely J, Breazeale D, Ghosh B, Freidhoff L, Ehrlich-Kautzky E, Schou C, Krishnaswamy G, Beaty T (1994) Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 264:1152–1156CrossRefGoogle Scholar
  45. Martinez FD (1999) Maturation of immune responses at the beginning of asthma. J Allergy Clin Immunol 103:355–361. CrossRefGoogle Scholar
  46. Mckinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260CrossRefGoogle Scholar
  47. Meadow JF, Altrichter AE, Kembel SW, Kline J, Mhuireach G, Moriyama M, Northcutt D, O'Connor TK, Womack AM, Brown GZ, Green JL, Bohannan BJM (2014) Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 24:41–48. CrossRefGoogle Scholar
  48. Moschandreas DJ, Pagilla KR, Storino LV (2003) Time and space uniformity of indoor bacteria concentrations in Chicago area residences. Aerosol Sci Technol 37:899–906. CrossRefGoogle Scholar
  49. Mutius V et al (2010) Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin Exp Allergy 30:1230–1234CrossRefGoogle Scholar
  50. Nevalainen A, Taubel M, Hyvarinen A (2015) Indoor fungi: companions and contaminants. Indoor Air 25:125–156. CrossRefGoogle Scholar
  51. Noris F, Siegel JA, Kinney KA (2011) Evaluation of HVAC filters as a sampling mechanism for indoor microbial communities. Atmos Environ 45:338–346. CrossRefGoogle Scholar
  52. Pakarinen J, Hyvärinen A, Salkinoja-Salonen M, Laitinen S, Nevalainen A, Mäkelä MJ, Haahtela T, von Hertzen L (2008) Predominance of Gram-positive bacteria in house dust in the low-allergy risk Russian Karelia. Environ Microbiol 10:3317–3325. CrossRefGoogle Scholar
  53. Pitkaranta M, Meklin T, Hyvarinen A, Paulin L, Auvinen P, Nevalainen A, Rintala H (2008) Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Appl Environ Microbiol 74:233–244. CrossRefGoogle Scholar
  54. Pitkaranta M et al (2011) Molecular profiling of fungal communities in moisture damaged buildings before and after remediation--a comparison of culture-dependent and culture-independent methods. BMC Microbiol 11:235. CrossRefGoogle Scholar
  55. Pugin J et al (1994) Cd14 is a pattern-recognition receptor. Immunity 1:509–516. CrossRefGoogle Scholar
  56. Raison CL, Lowry CA, Rook GA (2010) Inflammation, sanitation, and consternation: loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression. Arch Gen Psychiatry 67:1211–1224. CrossRefGoogle Scholar
  57. Riedler J, Eder W, Oberfeld G, Schreuer M (2000) Austrian children living on a farm have less hay fever, asthma and allergic sensitization. Clin Exp Allergy 30:194–200CrossRefGoogle Scholar
  58. Riedler J, Braun-Fahrländer C, Eder W, Schreuer M, Waser M, Maisch S, Carr D, Schierl R, Nowak D, von Mutius E (2001) Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358:1129–1133. CrossRefGoogle Scholar
  59. Rintala H, Pitkaranta M, Toivola M, Paulin L, Nevalainen A (2008) Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiol 8:56. CrossRefGoogle Scholar
  60. Rintala H, Pitkaranta M, Taubel M (2012) Microbial communities associated with house dust. Adv Appl Microbiol 78:75–120. CrossRefGoogle Scholar
  61. Rook GA, Martinelli R, Brunet LR (2003) Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr Opin Allergy Clin Immunol 3:337–342. CrossRefGoogle Scholar
  62. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974–977. CrossRefGoogle Scholar
  63. Rylander R, Holt PG (1998) (1-->3)-beta-D-glucan and endotoxin modulate immune response to inhaled allergen. Mediat Inflamm 7:105–110. CrossRefGoogle Scholar
  64. Sharpe RA, Bearman N, Thornton CR, Husk K, Osborne NJ (2015) Indoor fungal diversity and asthma: a meta-analysis and systematic review of risk factors. J Allergy Clin Immunol 135:110–122. CrossRefGoogle Scholar
  65. Simpson A, John SL, Jury F, Niven R, Woodcock A, Ollier WER, Custovic A (2006) Endotoxin exposure, CD14, and allergic disease - an interaction between genes and the environment. Am J Respir Crit Care Med 174:386–392. CrossRefGoogle Scholar
  66. Sing D, Sing CF (2010) Impact of direct soil exposures from airborne dust and geophagy on human health. Int J Environ Res Public Health 7:1205–1223. CrossRefGoogle Scholar
  67. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736. CrossRefGoogle Scholar
  68. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290. CrossRefGoogle Scholar
  69. Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260CrossRefGoogle Scholar
  70. Taubel M et al (2009) The occupant as a source of house dust bacteria. J Allergy Clin Immunol 124:834–840 e847. CrossRefGoogle Scholar
  71. Thorn J (2001) Seasonal variations in exposure to microbial cell wall components among household waste collectors. Ann Occup Hyg 45:153–156. CrossRefGoogle Scholar
  72. Torvinen E, Torkko P, Rintala AN (2010) Real-time PCR detection of environmental mycobacteria in house dust. J Microbiol Methods 82:78–84. CrossRefGoogle Scholar
  73. Trinchieri G et al (1992) Natural killer cell stimulatory factor (NKSF) or interleukin-12 is a key regulator of immune response and inflammation. Prog Growth Factor Res 4:355–368Google Scholar
  74. van Oosterhout AJM, Bloksma N (2005) Regulatory T-lymphocytes in asthma. Eur Respir J 26:918–932. CrossRefGoogle Scholar
  75. Vercelli D (2003) Learning from discrepancies: CD14 polymorphisms, atopy and the endotoxin switch. Clin Exp Allergy 33:153–155CrossRefGoogle Scholar
  76. Vo N, Tsai TC, Maxwell C, Carbonero F (2017) Early exposure to agricultural soil accelerates the maturation of the early-life pig gut microbiota. Anaerobe 45:31–39. CrossRefGoogle Scholar
  77. Von HL, Hyvärinen A, Laatikainen T, Mäkelä MJ, Nevalainen A, Vartiainen E, Haahtela T (2010) Risk of atopy associated with microbial components in house dust. Ann Allergy Asthma Immunol 104:269–270CrossRefGoogle Scholar
  78. Weikl F, Tischer C, Probst AJ, Heinrich J, Markevych I, Jochner S, Pritsch K (2016) Fungal and bacterial communities in indoor dust follow different environmental determinants. PLoS One 11:e0154131. CrossRefGoogle Scholar
  79. Wickman M, Gravesen S, Nordvall SL, Pershagen G, Sundell J (1992) Indoor viable dust-bound microfungi in relation to residential characteristics, living habits, and symptoms in atopic and control children. J Allergy Clin Immunol 89:752–759. CrossRefGoogle Scholar
  80. Wouters IM, Hilhorst SKM, Kleppe P, Doekes G, Douwes J, Peretz C, Heederik D (2002) Upper airway inflammation and respiratory symptoms in domestic waste collectors. Occup Environ Med 59:106–112. CrossRefGoogle Scholar
  81. Yamamoto N, Shendell DG, Peccia J (2011) Assessing allergenic fungi in house dust by floor wipe sampling and quantitative PCR. Indoor Air 21:521–530. CrossRefGoogle Scholar
  82. Zhang G, Goldblatt J, LeSouef PN (2008) Does the relationship between IgE and the CD14 gene depend on ethnicity? Allergy 63:1411–1417. CrossRefGoogle Scholar
  83. Zhou D, Zhang H, Bai Z, Zhang A, Bai F, Luo X, Hou Y, Ding X, Sun B, Sun X, Ma N, Wang C, Dai X, Lu Z (2016) Exposure to soil, house dust and decaying plants increases gut microbial diversity and decreases serum immunoglobulin E levels in BALB/c mice. Environ Microbiol 18:1326–1337. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yifan Shan
    • 1
  • Weidong Wu
    • 1
    Email author
  • Wei Fan
    • 1
  • Tari Haahtela
    • 2
  • Guicheng Zhang
    • 3
  1. 1.School of Public HealthXinxiang Medical UniversityXinxiangPeople’s Republic of China
  2. 2.Skin and Allergy HospitalHelsinki University Central HospitalHelsinkiFinland
  3. 3.School of Public HealthCurtin UniversityPerthAustralia

Personalised recommendations