Advertisement

International Microbiology

, Volume 22, Issue 1, pp 103–110 | Cite as

Degradative properties of two newly isolated strains of the ascomycetes Fusarium oxysporum and Lecanicillium aphanocladii

  • Natalia N. PozdnyakovaEmail author
  • Giovanna C. Varese
  • Valeria Prigione
  • Ekaterina V. Dubrovskaya
  • Svetlana A. Balandina
  • Olga V. Turkovskaya
Original Article
  • 67 Downloads

Abstract

Two ascomycete strains were isolated from creosote-contaminated railway sleeper wood. By using a polyphasic approach combining morpho-physiological observations of colonies with molecular tools, the strains were identified as Fusarium oxysporum Schltdl. (IBPPM 543, MUT 4558; GenBank accession no. MG593980) and Lecanicillium aphanocladii Zare & W. Gams (IBPPM 542, MUT 242; GenBank accession no. MG593981). Both strains degraded hazardous pollutants, including polycyclic aromatic hydrocarbons, anthraquinone-type dyes, and oil. Oil was better degraded by F. oxysporum, but the aromatic compounds were better degraded by L. aphanocladii. With both strains, the degradation products of anthracene, phenanthrene, and fluorene were 9,10-anthraquinone, 9,10-phenanthrenequinone, and 9-fluorenone, respectively. During pollutant degradation, F. oxysporum and L. aphanocladii produced an emulsifying compound(s). Both fungi produced extracellular Mn-peroxidases, enzymes possibly involved in the fungal degradation of the pollutants. This is the first report on the ability of L. aphanocladii to degrade four-ring PAHs, anthraquinone-type dyes, and oil, with the simultaneous production of an extracellular Mn-peroxidase.

Keywords

Fusarium oxysporum Lecanicillium aphanocladii Degradation Pollutants Mn-peroxidase 

Notes

Acknowledgements

We are grateful to Dr. M.P. Chernyshova (IBPPM RAS) for gas chromatographic analysis. We are also grateful to Dmitry N. Tychinin for his assistance in preparation of the English text of this paper.

Funding information

This research was supported by a grant from the Russian Science Foundation (project no. 16-14-00081).

References

  1. Ali S, Zhang C, Wang Z, Wang X, Wu J, Cuthbertson A, Shao Z, Qiu B (2017) Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Sci Rep 20:46558CrossRefGoogle Scholar
  2. Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opinion Biotechn 38:1–8CrossRefGoogle Scholar
  3. Arun A, Raja P, Arthi R, Ananthi M, Kumar K, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151:132–142CrossRefGoogle Scholar
  4. Bezalel L, Hadar Y, Cerniglia C (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501Google Scholar
  5. Bhardwaj G, Cameotra S, Chopra H (2013) Biosurfactant from fungi: a review. J Pet Environ Biotechnol 4.  https://doi.org/10.4172/2157-7463.1000160
  6. Cañero D, Roncero M (2008) Functional analyses of laccase genes from Fusarium oxysporum. Am. Phytopathol Soc 98:509–518CrossRefGoogle Scholar
  7. Castilho F, Torres R, Barbosa A, Dekker R, Garcia J (2009) On the diversity of the laccase gene: a phylogenetic perspective from Botryosphaeria rhodina (Ascomycota: Fungi) and other related taxa. Biochem Genet 47:80–91CrossRefGoogle Scholar
  8. Cooper D, Goldenberg B (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229Google Scholar
  9. Criquet S, Joner E, Leyval C (2001) 2,7-Diaminofluorene is a sensitive substrate for detection and characterization of plant root peroxidase activities. Plant Sci 161:1063–1066CrossRefGoogle Scholar
  10. Dekker R, Barbosa A, Giese E, Godoy S, Covizzi L (2007) Influence of nutrients on enhancing laccase production by Botryosphaeria rhodina MAMB-05. Int Microbiol 10:177–185Google Scholar
  11. Eichlerova I, Homolka L, Benada O, Kofronova O, Hubalek T, Nerud F (2007) Decolorization of Orange G and Remazol brilliant blue R by the white rot fungus Dichomitus squalens: toxicological evaluation and morphological study. Chemosphere 69:795–802CrossRefGoogle Scholar
  12. Fariba M, Simin N, Alireza M, Ramin N, Doustmorad Z, Gholam K, Abdolkarim C (2010) Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicol Environ Saf 73:613–619CrossRefGoogle Scholar
  13. Fenice M (2016) The psychrotolerant antarctic fungus Lecanicillium muscarium CCFEE 5003: a powerful producer of cold-tolerant chitinolytic enzymes. Molecules 21:447CrossRefGoogle Scholar
  14. Fernaud J, Marina A, González K, Vázquez J, Falcón M (2006) Production, partial characterization and mass spectrometric studies of the extracellular laccase activity from Fusarium proliferatum. Appl Microbiol Biotechnol 70:212–221CrossRefGoogle Scholar
  15. Gingina GM, Mitina GV, Pavlushin VA (1990) Toxigenecity of Verticillium lecanii (Zimmermann) viegas natural isolates. Mycol Phytophatol 24:576–582 (in Russian)Google Scholar
  16. Gordon T, Okamoto D, Jacobson D (1989) Colonization of muskmelon and non-susceptible crops by Fusarium oxysporum F. sp. melonis and other species of Fusarium. Phytopathology 79:1095–1100CrossRefGoogle Scholar
  17. Harms H (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192CrossRefGoogle Scholar
  18. Heinfling A, Martinez M, Martinez A, Bergbauer M, Szewzyk U (1998) Purification and characterization of peroxidases from dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165:43–50CrossRefGoogle Scholar
  19. Jacques R, Okeke B, Bento F, Teixeira A, Peralba M, Camargo F (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643CrossRefGoogle Scholar
  20. Jager A, Croan S, Kirk T (1985) Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50:1274–1278Google Scholar
  21. Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74CrossRefGoogle Scholar
  22. Kirk T, Croan S, Tien M, Murtagh K, Farrell R (1986) Production of multiple ligninases by Phanerochaete chrysosporium effect of selected growth condition and use mutant strain. Enzyme Microbial Technol 8:27–32CrossRefGoogle Scholar
  23. Krivobok S, Miriouchkine E, Seigle-Murandi F, Benoit-Guyod J-L (1998) Biodegradation of anthracene by soil fungi. Chemosphere 37:523–530CrossRefGoogle Scholar
  24. Krzysko-Lupicka T, Sudol T (2008) Interactions between glyphosate and autochthonous soil fungi surviving in aqueous solution of glyphosate. Chemosphere 71:1386–1391CrossRefGoogle Scholar
  25. Kwiatos N, Ryngajłło M, Bielecki S (2015) Diversity of laccase-coding genes in Fusarium oxysporum genomes. Front Microbiol 6:933CrossRefGoogle Scholar
  26. Lemanceau P, Bakker P, DeKogel W, Alabouvette C, Schippers B (1993) Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogen Fusarium oxysporum F. sp. Dianthi. Appl Environ Microbiol 59:74–82Google Scholar
  27. Leonowicz A, Grzywnowicz K (1981) Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microbial Technol 3:55–58CrossRefGoogle Scholar
  28. Liu W, Chao Y, Yang X, Bao H, Qian S (2004) Biodecolourization of azo, anthraquinonic and triphenylmethane dyes by white rot fungi and laccase-secreting engineered strain. J Ind Microbiol Biotechnol 31:127–132CrossRefGoogle Scholar
  29. Morales P, Cáceres M, Scott F, Díaz-Robles L, Aroca G, Vergara-Fernández A (2017) Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani. Appl Microbiol Biotechnol 101:6765–6777CrossRefGoogle Scholar
  30. Nikiforova SV, Pozdnyakova NN, Turkovskaya OV (2009) Emulsifying agent production during PAHs degradation by the white rot fungus Pleurotus ostreatus D1. Curr Microbiol 58:554–558CrossRefGoogle Scholar
  31. Niku-Paavola M, Karhunen E, Salola P, Raunio V (1988) Ligninolytic enzymes of the white rot fungus Phlebia radiata. Biochem J 254:877–884CrossRefGoogle Scholar
  32. Obruca S, Marova I, Matouskova P, Haronikova A, Lichnova A (2012) Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiol 57:221–227CrossRefGoogle Scholar
  33. Pinto A, Serrano C, Pires T, Mestrinho E, Dias L, Teixeira D, Caldeira A (2012) Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435-436:402–410CrossRefGoogle Scholar
  34. Polunina AG, Kushik GI (1977) Metody analiza organicheskogo veshchestva porod, nefti i Gaza (methods of analysis of organic matter in rocks, oil, and gas). In: Ryl’kov AV (ed) Tyumen’: Tr. Zap.-Sib. NIGNI, 122 (in Russian)Google Scholar
  35. Pozdnyakova NN, Jarosz-Wilkolazka A, Polak J, Graz M, Turkovskaya OV (2015) Decolourisation of anthraquinone-and anthracene-type dyes by versatile peroxidases from Bjerkandera fumosa and Pleurotus ostreatus D1. Biocatal Biotransform 33:69–80CrossRefGoogle Scholar
  36. Sampedro I, D’Annibale A, Ocampo J, Stazi S, García-Romera I (2007) Solid-state cultures of Fusarium oxysporum transform aromatic components of olive-mill dry residue and reduce its phytotoxicity. Bioresour Technol 98:3547–3555CrossRefGoogle Scholar
  37. Souza P, Grigoletto T, de Moraes L, Abreu L, Guimarães L, Santos C, Galvãom L, Cardoso P (2016) Production and chemical characterization of pigments in filamentous fungi. Microbiology 162:12–22CrossRefGoogle Scholar
  38. Thion C, Cebron A, Beguiristain T, Leyval C (2013) Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: microbial interactions and PAH dissipation. Biodegradation 24:569–581CrossRefGoogle Scholar
  39. Tien M, Kirk K (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci U S A 81:2280–2284CrossRefGoogle Scholar
  40. Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod J-L (1999) Effects of culture parameters on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) by selected fungi. Chemosphere 39:1397–1405CrossRefGoogle Scholar
  41. Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209CrossRefGoogle Scholar
  42. Wua Y-R, Luo Z-H, Chow R, Vrijmoed L (2010a) Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresour Technol 101:9772–9777CrossRefGoogle Scholar
  43. Wua Y-R, Luo Z-H, Vrijmoed L (2010b) Biodegradation of anthracene and benzo[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresour Technol 101:9666–9672CrossRefGoogle Scholar
  44. Zare R, Gams W (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwig 73:1–50Google Scholar
  45. Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, Yang X, An Q (2012) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater 229-230:361–370CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Natalia N. Pozdnyakova
    • 1
    Email author
  • Giovanna C. Varese
    • 2
  • Valeria Prigione
    • 2
  • Ekaterina V. Dubrovskaya
    • 1
  • Svetlana A. Balandina
    • 1
  • Olga V. Turkovskaya
    • 1
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  2. 2.Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly

Personalised recommendations