Microbiota dispersion in the Uyuni salt flat (Bolivia) as determined by community structure analyses

  • Cesar A. Pérez-FernándezEmail author
  • Mercedes Iriarte
  • Jessica Rivera-Pérez
  • Raymond L. Tremblay
  • Gary A. Toranzos
Original Article


Soil microbial communities are an important component of biological diversity and terrestrial ecosystems which is responsible for processes such as decomposition, mineralization of nutrients, and accumulation of organic matter. One of the factors that provide information on the mechanisms regulating biodiversity is spatial scaling. We characterized the microbial communities using 16S rRNA gene sequences from DNA isolated from halite at various locations and correlated these to geographic distance in the Uyuni salt flat (Bolivia). Sequences from each site were analyzed to determine any spatial patterns of diversity, as well as to describe the microbial communities. Results suggest that different taxa are able to disperse over Uyuni’s surface crust regardless of distance. As expected, ubiquitous taxa included members of Halobacteriaceae such as Haloarcula, Halorubrum, Halorhabdus, Halolamina, and halophilic bacteria Salinibacter, Halorhodospira, and unclassified members of the Gammaproteobacteria. Archaeal communities were homogeneous across the salt flat. In contrast, bacterial communities present strong local variations which could be attributed to external factors. Likely sources for these variations are the Rio Grande river influent in the south shore and the Tunupa volcano influencing the northern area.


Hypersaline Microbial dispersion 16S rRNA gene Uyuni salt flat 



We thank Mr DNA Molecular Research Laboratory (Shallowater, TX) for their fast and reliable sequencing services.

Funding information

This study was partially funded by the Research Initiative for Scientific Enhancement Program (Grant No. 5R25GM061151-12, -13) and the support of Universidad Mayor de San Simón’s Dirección de Ciencias y Tecnología (UMSS-DCyT).

Supplementary material

10123_2018_52_Fig6_ESM.png (174 kb)

Rarefaction curves for unnormalized read counts (PNG 173 kb)

10123_2018_52_MOESM1_ESM.tif (1.3 mb)
High resolution image (TIF 1293 kb)
10123_2018_52_Fig7_ESM.png (168 kb)

Rare faction curves for normalized read counts (PNG 167 kb)

10123_2018_52_MOESM2_ESM.tif (1.2 mb)
High resolution image (TIF 1242 kb)
10123_2018_52_Fig8_ESM.png (211 kb)

Cannonical correspondence analysis of the microbial communities with the physicochemical description of (Risacher and Fritz 1991, 2000) (PNG 211 kb)

10123_2018_52_MOESM3_ESM.tif (25.1 mb)
High resolution image (TIF 25724 kb)
10123_2018_52_MOESM4_ESM.docx (15 kb)
ESM 4 (DOCX 14 kb)
10123_2018_52_MOESM5_ESM.docx (29 kb)
ESM 5 (DOCX 28 kb)
10123_2018_52_MOESM6_ESM.docx (13 kb)
ESM 6 (DOCX 13 kb)
10123_2018_52_MOESM7_ESM.docx (15 kb)
ESM 7 (DOCX 15 kb)


  1. Aguilar P, Acosta E, Dorador C, Sommaruga R (2016) Large differences in bacterial community composition among three nearby extreme waterbodies of the high Andean plateau. Front Microbiol 7Google Scholar
  2. Albuquerque L, da Costa MS (2014) The family Gaiellaceae. In: The prokaryotes. Springer, Berlin, pp 357–360Google Scholar
  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:1CrossRefGoogle Scholar
  4. Ballivian O, Risacher F (1981) Los salares del altiplano boliviano: métodos de estudio y estimación económica. ORSTOM, ParisGoogle Scholar
  5. Bell T (2010) Experimental tests of the bacterial distance–decay relationship. ISME J 4:1357–1365CrossRefGoogle Scholar
  6. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  8. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522CrossRefGoogle Scholar
  9. Cho J-C, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456CrossRefGoogle Scholar
  10. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072CrossRefGoogle Scholar
  11. Dorador C, Vila I, Remonsellez F, Imhoff JF, Witzel K-P (2010) Unique clusters of archaea in Salar de Huasco, an athalassohaline evaporitic basin of the Chilean Altiplano. FEMS Microbiol Ecol 73:291–302Google Scholar
  12. Dorador C, Vila I, Witzel K-P, Imhoff JF (2013) Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fundam Appl Limnol 182:135–159CrossRefGoogle Scholar
  13. Fernández AB, Ghai R, Martin-Cuadrado A-B, Sanchez-Porro C, Rodriguez-Valera F, Ventosa A (2014a) Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol 88:623–635CrossRefGoogle Scholar
  14. Fernández AB, Vera-Gargallo B, Sánchez-Porro C, Ghai R, Papke RT, Rodriguez-Valera F, Ventosa A (2014b) Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5.
  15. Fernandez AB, Rasuk MC, Visscher PT, Contreras M, Novoa F, Poire DG, Patterson MM, Ventosa A, Farias ME (2016) Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front Microbiol 7.
  16. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631CrossRefGoogle Scholar
  17. Fox GE, Wisotzkey JD, Jurtshuk JRP (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Evol Microbiol 42:166–170Google Scholar
  18. Ghai R, Pašić L, Fernández AB, Martin-Cuadrado A-B, Mizuno CM, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1Google Scholar
  19. Gomariz M, Martínez-García M, Santos F, Rodriguez F, Capella-Gutiérrez S, Gabaldón T, Rossello-Mora R, Meseguer I, Antón J (2015) From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists. ISME J 9:16–31CrossRefGoogle Scholar
  20. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  21. Green J, Bohannan BJ (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501–507CrossRefGoogle Scholar
  22. Guzmán D, Quillaguamán J, Muñoz M, Hatti-Kaul R (2010) Halomonas andesensis sp. nov., a moderate halophile isolated from the saline lake Laguna Colorada in Bolivia. Int J Syst Evol Microbiol 60:749–753CrossRefGoogle Scholar
  23. Haferburg G, Gröning JA, Schmidt N, Kummer N-A, Erquicia JC, Schlömann M (2017) Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia. Microbiol Res 199:19–28CrossRefGoogle Scholar
  24. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506CrossRefGoogle Scholar
  25. Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579CrossRefGoogle Scholar
  26. Hovland M, Kuznetsova T, Rueslåtten H, Kvamme B, Johnsen HK, Fladmark GE, Hebach A (2006) Sub-surface precipitation of salts in supercritical seawater. Basin Res 18:221–230CrossRefGoogle Scholar
  27. Imhoff JF, Rodriguez-Valera F (1984) Betaine is the main compatible solute of halophilic eubacteria. J Bacteriol 160:478–479Google Scholar
  28. Imhoff JF, Hashwa F, Trüper H (1978) Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch Hydrobiol 84:381–388Google Scholar
  29. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104:11436–11440CrossRefGoogle Scholar
  30. Lu Z, Zhang W (2012) Comparative phylogenies of ribosomal proteins and the 16S rRNA gene at higher ranks of the class Actinobacteria. Curr Microbiol 65:1–6CrossRefGoogle Scholar
  31. Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895CrossRefGoogle Scholar
  32. McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531CrossRefGoogle Scholar
  33. Oksanen J, Blanchet F, Kindt R, Legendre P, O'Hara R, Simpson G, Solymos P, Stevens M, Wagner H (2015) Vegan: community ecology package. R package version 2.3–1Google Scholar
  34. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63CrossRefGoogle Scholar
  35. Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760CrossRefGoogle Scholar
  36. Pandit AS, Joshi MN, Bhargava P, Shaikh I, Ayachit GN, Raj SR, Saxena AK, Bagatharia SB (2015) A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. Extremophiles 19:973–987CrossRefGoogle Scholar
  37. Paul D, Kumbhare SV, Mhatre SS, Chowdhury SP, Shetty SA, Marathe NP, Bhute S, Shouche YS (2016) Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock. Front Microbiol 6:1553CrossRefGoogle Scholar
  38. Pena A, Valens M, Santos F, Buczolits S, Antón J, Kämpfer P, Busse H-J, Amann R, Rossello-Mora R (2005) Intraspecific comparative analysis of the species Salinibacter ruber. Extremophiles 9:151–161CrossRefGoogle Scholar
  39. Perez-Fernandez CA, Iriarte M, Hinojosa-Delgadillo W, Veizaga-Salinas A, Cano RJ, Rivera-Perez J, Toranzos GA (2016) First insight into microbial diversity and ion concentration in the Uyuni salt flat, Bolivia. Caribb J Sci 49:57–75CrossRefGoogle Scholar
  40. Quillaguamán J, Delgado O, Mattiasson B, Hatti-Kaul R (2004a) Chromohalobacter sarecensis sp. nov., a psychrotolerant moderate halophile isolated from the saline Andean region of Bolivia. Int J Syst Evol Microbiol 54:1921–1926CrossRefGoogle Scholar
  41. Quillaguamán J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O (2004b) Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54:721–725CrossRefGoogle Scholar
  42. Raymond J, Sistrom W (1967) The isolation and preliminary characterization of a halophilic photosynthetic bacterium. Arch Microbiol 59:255–268Google Scholar
  43. Risacher F (1988) Ultimos datos sobre el Salar de Uyuni recursos economicos y origen de las concentraciones en Li, K, Mg, B. Paper presented at the Simposio de la Investigacion Francesa en Bolivia, La Paz, pp 19–22Google Scholar
  44. Risacher F, Fritz B (1991) Quaternary geochemical evolution of the salars of Uyuni and Coipasa, Central Altiplano, Bolivia. Chem Geol 90:211–231CrossRefGoogle Scholar
  45. Risacher F, Fritz B (2000) Bromine geochemistry of Salar de Uyuni and deeper salt crusts, central Altiplano, Bolivia. Chem Geol 167:373–392CrossRefGoogle Scholar
  46. Rodriguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb Ecol 11:107–115CrossRefGoogle Scholar
  47. Rubin SS, Marín I, Gómez MJ, Morales EA, Zekker I, San Martín P, Rodríguez N, Amils R (2017) Prokaryotic diversity and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat. Environ Microbiol 19:3745–3754CrossRefGoogle Scholar
  48. Shannon CE, Weaver W (1963) The mathematical theory of communication. 1949. University of Illinois Press, UrbanaGoogle Scholar
  49. Simachew A, Lanzén A, Gessesse A, Øvreås L (2016) Prokaryotic community diversity along an increasing salt gradient in a soda ash concentration pond. Microb Ecol 71:326–338CrossRefGoogle Scholar
  50. Simpson E (1949) Measurement of diversity. Nature 163:668Google Scholar
  51. Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL (2010) Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Appl Environ Microbiol 76:757–768CrossRefGoogle Scholar
  52. Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G (2016) Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front Microbiol 7
  53. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544Google Scholar
  54. Ventosa A, Fernández AB, León MJ, Sánchez-Porro C, Rodriguez-Valera F (2014) The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 18:811–824CrossRefGoogle Scholar
  55. Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7:1655–1666CrossRefGoogle Scholar
  56. Wang J, Yang D, Zhang Y, Shen J, Van Der Gast C, Hahn MW, Wu Q (2011) Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms? PLoS One 6:e27597CrossRefGoogle Scholar
  57. Youssef NH, Ashlock-Savage KN, Elshahed MS (2012) Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol 78:1332–1344CrossRefGoogle Scholar
  58. Zhong Z-P, Liu Y, Miao L-L, Wang F, Chu L-M, Wang J-L, Liu Z-P (2016) Prokaryotic community structure driven by salinity and ionic concentrations in plateau lakes of the Tibetan plateau. Appl Environ Microbiol 82:1846–1858CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cesar A. Pérez-Fernández
    • 1
    Email author
  • Mercedes Iriarte
    • 2
  • Jessica Rivera-Pérez
    • 1
    • 3
  • Raymond L. Tremblay
    • 4
    • 5
  • Gary A. Toranzos
    • 1
  1. 1.Environmental Microbiology LaboratoryUniversity of Puerto Rico, Rio Piedras campusSan JuanPuerto Rico
  2. 2.Centro de Aguas y Saneamiento Ambiental, Facultad de Ciencias y TecnologíaUniversidad Mayor de San SimónCochabambaBolivia
  3. 3.Ecosystems and Global ChangeLincolnNew Zealand
  4. 4.Biology DepartmentUniversity of Puerto Rico, Humacao campusHumacaoPuerto Rico
  5. 5.Center for Applied Tropical Ecology and ConservationUniversity of Puerto RicoSan JuanPuerto Rico

Personalised recommendations