Adaptation of granular sludge microbial communities to nitrate, sulfide, and/or p-cresol removal

  • Nuria Fernandez-Gonzalez
  • Reyes Sierra-Alvarez
  • James A. Field
  • Ricardo Amils
  • Jose Luis Sanz
Original Article


Effluents from petroleum refineries contain a toxic mixture of sulfide, nitrogen, and phenolic compounds that require adequate treatment for their removal. Biological denitrification processes are a cost-effective option for the treatment of these effluents, but the knowledge on the microbial interactions in simultaneous sulfide and phenol oxidation in denitrifying reactors is still very limited. In this work, microbial community structure and macrostructure of granular biomass were studied in three denitrifying reactors treating a mixture of inorganic (sulfide) and organic (p-cresol) electron donors for their simultaneous removal. The differences in the available substrates resulted in different community assemblies that supported high removal efficiencies, indicating the community adaptation capacity to the fluctuating compositions of industrial effluents. The three reactors were dominated by nitrate reducing and denitrifying bacteria where Thiobacillus spp. were the prevalent denitrifying organisms. The toxicity and lack of adequate substrates caused the endogenous decay of the biomass, leading to release of organic matter that maintained a diverse although not very abundant group of heterotrophs. The endogenous digestion of the granules caused the degradation of its macrostructure, which should be considered to further develop the denitrification process in sulfur-based granular reactors for treatment of industrial wastewater with toxic compounds.


Thiobacillus Granular denitrifying reactor Hazardous waste Petroleum refinery wastewater Endogenous decay Nitrogen transformations 


Funding information

This research was funded by a grant from the Spanish Ministerio de Educacion y Ciencia to J.L. Sanz (CTM2006-04131/TECNO).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10123_2018_50_MOESM1_ESM.pdf (464 kb)
ESM 1 (PDF 463 kb)


  1. Alphenaar PA, Groeneveld N, Van Aelst AC (1994) Scanning electron microscopical method for internal structure analysis of anaerobic granular sludge. Micron 25:129–133. CrossRefGoogle Scholar
  2. Autenrieth RL, Bonner JS, Akgerman A, Okaygun M, McCreary EM (1991) Biodegradation of phenolic wastes. J Hazard Mater 28:29–53. CrossRefGoogle Scholar
  3. Beristain-Cardoso R, Texier A-C, Alpuche-Solís Á, Gómez J, Razo-Flores E (2009) Phenol and sulfide oxidation in a denitrifying biofilm reactor and its microbial community analysis. Process Biochem 44:23–28. CrossRefGoogle Scholar
  4. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. CrossRefGoogle Scholar
  5. Chen X, Luo Q, Wang D, Gao J, Wei Z, Wang Z, Zhou H, Mazumder A (2015) Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China. Environ Pollut 206:64–72. CrossRefGoogle Scholar
  6. Collins G, O’Connor L, Mahony T, Gieseke A, de Beer D, O’Flaherty V (2005) Distribution, localization, and phylogeny of abundant populations of Crenarchaeota in anaerobic granular sludge. Appl. Environ. Microbiol. 71:7523–7527. CrossRefGoogle Scholar
  7. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. CrossRefGoogle Scholar
  8. Díaz E, Amils R, Sanz JL (2003) Molecular ecology of anaerobic granular sludge grown at different conditions. Water Sci Technol 48:57–64CrossRefGoogle Scholar
  9. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. CrossRefGoogle Scholar
  10. Felföldi T, Székely AJ, Gorál R, Barkács K, Scheirich G, András J, Rácz A, Márialigeti K (2010) Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. Bioresour Technol 101:3406–3414. CrossRefGoogle Scholar
  11. Fernández N, Sierra-Alvarez R, Field JA, Amils R, Sanz JL (2008) Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge. Chemosphere 70:462–474. CrossRefGoogle Scholar
  12. Frost TM, Carpenter SR, Ives AR, Kratz TK (1995) Species compensation and complementarity in ecosystem function. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman and Hall, New York, pp 224–239CrossRefGoogle Scholar
  13. Ho KL, Chen YY, Lee DJ (2010) Functional consortia for cresol-degrading activated sludges: toxicity-to-extinction approach. Bioresour Technol 101:9000–9005. CrossRefGoogle Scholar
  14. Kellermann C, Griebler C (2009) Thiobacillus thiophilus sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. Int J Syst Evol Microbiol 59:583–588. CrossRefGoogle Scholar
  15. Kelly DP, Harrison AH (1989) Genus Thiobacillus. In: Staley JT, Bryant MP, Pfenning N, Holt J (eds) Bergey’s manual of systematic bacteriology, vol 2, Second Edi edn. Williams & Williams, Baltimore, pp 1842–1858Google Scholar
  16. Koenig A, Zhang T, Liu L-H, Fang HHP (2005) Microbial community and biochemistry process in autosulfurotrophic denitrifying biofilm. Chemosphere 58:1041–1047. CrossRefGoogle Scholar
  17. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Academic Press, Chichester, pp 115–175Google Scholar
  18. Lee C-YY, Shin H-SS, Hwang SJ (2004) Characteristics of granular sludge in a single upflow sludge blanket reactor treating high levels of nitrate and simple organic compounds. Water Sci Technol 50:217–224CrossRefGoogle Scholar
  19. Liu C, Han K, Lee DJ, Wang Q (2016) Simultaneous biological removal of phenol, sulfide, and nitrate using expanded granular sludge bed reactor. Appl Microbiol Biotechnol 100:4211–4217. CrossRefGoogle Scholar
  20. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. CrossRefGoogle Scholar
  21. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838. CrossRefGoogle Scholar
  22. Moon HS, Shin D, Nam K, Kim JY, Asce AM (2010) Distribution of the microbial community structure in S sulfur-based autotrophic denitrification columns. J Environ Eng 136:481–487. CrossRefGoogle Scholar
  23. Oenema O, Roest CW (1998) Nitrogen and phosphorus losses from agriculture into surface waters: the effects of policies and measures in the Netherlands. Water Sci Technol 37:19–30. CrossRefGoogle Scholar
  24. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package. R package version 2.4-6.Google Scholar
  25. Olmos A, Olguin P, Fajardo C, Razo E, Monroy O (2004) Physicochemical characterization of spent caustic from the OXIMER process and sour waters from mexican oil refineries. Energy and Fuels 18:302–304. CrossRefGoogle Scholar
  26. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101. CrossRefGoogle Scholar
  27. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. CrossRefGoogle Scholar
  28. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. CrossRefGoogle Scholar
  29. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  30. Regueiro L, Veiga P, Figueroa M, Lema JM, Carballa M (2014) Influence of transitional states on the microbial ecology of anaerobic digesters treating solid wastes. Appl Microbiol Biotechnol 98:2015–2027. CrossRefGoogle Scholar
  31. Reis MAM, Almeida JS, Lemos PC, Carrondo MJT (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40:593–600. CrossRefGoogle Scholar
  32. Reyes-Avila J, Razo-Flores E, Gomez J (2004) Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Res 38:3313–3321. CrossRefGoogle Scholar
  33. Ruiz G, Jeison D, Chamy R (2006) Development of denitrifying and methanogenic activities in USB reactors for the treatment of wastewater: effect of COD/N ratio. Process Biochem 41:1338–1342. CrossRefGoogle Scholar
  34. Show K-Y, Lee D-J, Pan X (2013) Simultaneous biological removal of nitrogen-sulfur-carbon: recent advances and challenges. Biotechnol Adv 31:409–420. CrossRefGoogle Scholar
  35. Sierra-Alvarez R, Guerrero F, Rowlette P, Freeman S, Field JAA, Rowiette P, Freeman S, Field JAA (2005) Comparison of chemo-, hetero- and mixotrophic denitrification in laboratory-scale UASBs. Water Sci Technol 52:337–342CrossRefGoogle Scholar
  36. Suarez L, Brender JD, Langlois PH, Zhan FB, Moody K (2007) Maternal exposures to hazardous waste sites and industrial facilities and risk of neural tube defects in offspring. Ann Epidemiol 17:772–777. CrossRefGoogle Scholar
  37. Vaiopoulou E, Melidis P, Aivasidis A (2005) Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Res 39:4101–4109. CrossRefGoogle Scholar
  38. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. CrossRefGoogle Scholar
  39. Williams D, Brown JW (2010) Archaeal diversity in a municipal wastewater sludge. KBM. J. Biol. 1:30–33. Google Scholar
  40. Yang W, Lu H, Khanal SK, Zhao Q, Meng L, Chen G-HH (2016) Granulation of sulfur-oxidizing bacteria for autotrophic denitrification. Water Res 104:507–519. CrossRefGoogle Scholar
  41. Yoda M, Nishimura S (1997) Controling granular sludge flotation in UASB reactors. Water Sci Technol 36:165–173CrossRefGoogle Scholar
  42. Zhang L, Zhang C, Hu C, Liu H, Bai Y, Qu J (2015) Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors. Water Res 85:422–431. CrossRefGoogle Scholar
  43. Zhou X, Chen C, Wang A, Liu L-H, Ho K-L, Ren N, Lee D-J (2011) Rapid acclimation of methanogenic granular sludge into denitrifying sulfide removal granules. Bioresour Technol 102:5244–5247. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Molecular BiologyUniversidad Autónoma de MadridMadridSpain
  2. 2.Department of Chemical EngineeringUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Department of Chemical and Environmental EngineeringThe University of ArizonaTucsonUSA

Personalised recommendations