International Microbiology

, Volume 21, Issue 1–2, pp 15–22 | Cite as

The sequences of MinE responsible for its subcellular localization analyzed by competitive binding method in Escherichia coli

  • Miguel Á. Pérez-Rodríguez
  • Isabel Cristina Rodríguez-Luna
  • Ricardo Carreño-López
  • Edgar E. Lara-Ramírez
  • Mario A. Rodríguez-Pérez
  • Xianwu GuoEmail author
Original Article


The subcellular localization of a protein is important for its proper function. Escherichia coli MinE is a small protein with clear subcellular localization, which provides a good model to study protein localization mechanism. In the present study, a series of recombinant minEs truncated in one end or in the middle regions, fused with egfp, was constructed, and these recombinant proteins could compete to function with the chromosomal MinE. Our results showed that the sequences related to the subcellular localization of MinE span several functional domains, demonstrating that MinE positioning in cells depends on multiple factors. The eGFP fusions with some truncated MinE from N-terminal resulted in different cell phenotypes and localization features, implying that these fusions can interfere chromosomal MinE’s function, similar to MinE36–88 phenotype in the previous report. The amino acid in the region (32–48) is sensitive to change MinE conformation and influence its dimerization. Some truncated protein structure could be unstable. Thus, the MinE localization is prerequisite for its proper anti-MinCD function and some new features of MinE were demonstrated. This approach can be extended for subcellular localization research for other essential proteins.


MinE Subcellular localization Cell division Sequence 


Funding information

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT)-México (Grant No. 168541) and Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional, México (No. 20151373). Miguel Ángel Pérez-Rodríguez held scholarships from CONACyT. X. Guo and Mario A. Rodriguez Perez hold scholarships from COFAA-IPN.

Compliance with ethical standards

Competing interests

The authors declare that they have no conflict of interest.

Supplementary material

10123_2018_1_MOESM1_ESM.png (95 kb)
Supplementary Figure 1 (PNG 95.3 kb)


  1. Bramkamp M, van Baarle S (2009) Division site selection in rod-shaped bacteria. Curr Opin Microbiol 12:683–688CrossRefPubMedGoogle Scholar
  2. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (EGFP). Gene 173:33–38CrossRefPubMedGoogle Scholar
  3. de Boer PA, Crossley RE, Rothfield LI (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–649CrossRefPubMedGoogle Scholar
  4. Emanuelsson O, Nielsen H, Brunak S, Von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016CrossRefPubMedGoogle Scholar
  5. Fu X, Shih Y-L, Zhang Y, Rothfield LI (2001) The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc Natl Acad Sci U S A 98:980–985CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fu Y, Zepeda-Gurrola RC, Aguilar-Gutiérrez GR, Lara-Ramírez EE, De Luna-Santillana EJ, Rodríguez-Luna IC, Sánchez-Varela A, Carreño-López R et al (2014) The detection of inherent homologous recombination between repeat sequences in H. pylori 26695 by the PCR-based method. Curr Microbiol 68:211–219CrossRefPubMedGoogle Scholar
  7. Ghasriani H, Goto NK (2011) Regulation of symmetric bacterial cell division by MinE: what is the role of conformational dynamics? Commun Integr Biol 4:101–103CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ghasriani H, Ducat T, Hart CT, Hafizi F, Chang N, Al-Baldawi A, Ayed SH, Lundström P et al (2010) Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE. Proc Natl Acad Sci U S A 107:18416–18421CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hale CA, Meinhardt H, de Boer PA (2001) Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J 20:1563–1572CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hsieh CW, Lin TY, Lai HM, Lin CC, Hsieh TS, Shih YL (2010) Direct MinE–membrane interaction contributes to the proper localization of MinDE in E. coli. Mol Microbiol 75:499–512CrossRefPubMedGoogle Scholar
  11. Hu Z, Lutkenhaus J (1999) Topological regulation of cell division in Escherichia coliinvolves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34:82–90CrossRefPubMedGoogle Scholar
  12. Hu Z, Lutkenhaus J (2000) Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J Bacteriol 182:3965–3971CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hu Z, Saez C, Lutkenhaus J (2003) Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE. J Bacteriol 185:196–203CrossRefPubMedPubMedCentralGoogle Scholar
  14. King GF, Rowland SL, Pan B, Mackay JP, Mullen GP, Rothfield LI (1999) The dimerization and topological specificity functions of MinE reside in a structurally autonomous C-terminal domain. Mol Microbiol 31:1161–1169CrossRefPubMedGoogle Scholar
  15. King GF, Shih Y-L, Maciejewski MW, Bains NP, Pan B, Rowland SL, Mullen GP, Rothfield LI (2000) Structural basis for the topological specificity function of MinE. Nat Struct Mol Biol 7:1013–1017CrossRefGoogle Scholar
  16. Labie C, Bouché F, Bouché J (1990) Minicell-forming mutants of Escherichia coli: suppression of both DicB-and MinD-dependent division inhibition by inactivation of the minC gene product. J Bacteriol 172:5852–5855CrossRefPubMedPubMedCentralGoogle Scholar
  17. Laloux G, Jacobs-Wagner C (2014) How do bacteria localize proteins to the cell pole? J Cell Sci 127:11–19CrossRefPubMedPubMedCentralGoogle Scholar
  18. Park K-T, Wu W, Battaile KP, Lovell S, Holyoak T, Lutkenhaus J (2011) The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146:396–407CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pazos M, Casanova M, Palacios P, Margolin W, Natale P, Vicente M (2014) FtsZ placement in nucleoid-free bacteria. PLoS One 9:e91984CrossRefPubMedPubMedCentralGoogle Scholar
  20. Pichoff S, Vollrath B, Touriol C, Bouché JP (1995) Deletion analysis of gene minE which encodes the topological specificity factor of cell division in Escherichia coli. Mol Microbiol 18:321–329CrossRefPubMedGoogle Scholar
  21. Raskin DM, de Boer PA (1997) The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell 91:685–694CrossRefPubMedGoogle Scholar
  22. Raskin DM, de Boer PA (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci U S A 96:4971–4976CrossRefPubMedPubMedCentralGoogle Scholar
  23. Rowland S, Fu X, Sayed M, Zhang Y, Cook W, Rothfield L (2000) Membrane redistribution of the Escherichia coli MinD protein induced by MinE. J Bacteriol 182:613–619CrossRefPubMedPubMedCentralGoogle Scholar
  24. Rudner DZ, Losick R (2010) Protein subcellular localization in bacteria. Cold Spring Harb Perspect Biol 2:a000307CrossRefPubMedPubMedCentralGoogle Scholar
  25. Shapiro L, McAdams HH, Losick R (2009) Why and how bacteria localize proteins. Science 326:1225–1228CrossRefPubMedGoogle Scholar
  26. Shih YL, Zheng M (2013) Spatial control of the cell division site by the Min system in Escherichia coli. Environ Microbiol 15:3229–3239CrossRefPubMedGoogle Scholar
  27. Zhang Y, Rowland S, King G, Braswell E, Rothfield L (1998) The relationship between hetero-oligomer formation and function of the topological specificity domain of the Escherichia coli MinE protein. Mol Microbiol 30:265–273CrossRefPubMedGoogle Scholar
  28. Zhao C-R, De Boer P, Rothfield LI (1995) Proper placement of the Escherichia coli division site requires two functions that are associated with different domains of the MinE protein. Proc Natl Acad Sci U S A 92:4313–4317CrossRefPubMedPubMedCentralGoogle Scholar
  29. Zhou H, Schulze R, Cox S, Saez C, Hu Z, Lutkenhaus J (2005) Analysis of MinD mutations reveals residues required for MinE stimulation of the MinD ATPase and residues required for MinC interaction. J Bacteriol 187:629–638CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Miguel Á. Pérez-Rodríguez
    • 1
    • 2
  • Isabel Cristina Rodríguez-Luna
    • 2
  • Ricardo Carreño-López
    • 3
  • Edgar E. Lara-Ramírez
    • 4
  • Mario A. Rodríguez-Pérez
    • 2
  • Xianwu Guo
    • 2
    Email author
  1. 1.Departamento de BotánicaUniversidad Autónoma Agraria Antonio NarroSaltilloMexico
  2. 2.Centro de Biotecnología GenómicaInstituto Politécnico NacionalCd. ReynosaMexico
  3. 3.Centro de Investigaciones en Ciencias MicrobiológicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  4. 4.Unidad de Investigación Biomédica de ZacatecasInstituto Mexicano del Seguro Social (IMSS)ZacatecasMexico

Personalised recommendations