Advertisement

JMJD2A sensitizes gastric cancer to chemotherapy by cooperating with CCDC8

  • Tadahiko Nakagawa
  • Yasushi SatoEmail author
  • Toshihito Tanahashi
  • Yasuhiro Mitsui
  • Yoshifumi Kida
  • Yasuteru Fujino
  • Misato Hirata
  • Shinji Kitamura
  • Hiroshi Miyamoto
  • Koichi Okamoto
  • Naoki Muguruma
  • Yoshimi Bando
  • Tetsuji Takayama
Original Article
  • 45 Downloads

Abstract

Background

Jumonji domain-containing protein 2A (JMJD2A) of the JMJD2 family of histone lysine demethylases has been implicated in tumorigenesis. However, its expression and role in gastric cancer (GC) drug resistance remain unknown. Here, we investigated the role of JMJD2A in GC chemotherapeutic susceptibility and its clinical relevance in GC.

Methods

We selected 12 relevant genes from previously identified gene signatures that can predict GC susceptibility to docetaxel, cisplatin, and S-1 (DCS) therapy. Each gene was knocked down using siRNA in GC cell lines, and cell viability assays were performed. JMJD2A expression in GC cell lines and tissues was assessed using qRT-PCR and immunohistochemistry, respectively. A JMJD2A downstream target related to drug susceptibility was examined using whole-gene expression array and immunoprecipitation.

Results

Among the 12 candidate genes, down-regulation of JMJD2A showed the maximum effect on GC susceptibility to anti-cancer drugs and increased the IC50 values for 5-FU, cisplatin, and docetaxel 15.3-, 2.7-, and 4.0-fold, respectively. JMJD2A was universally expressed in 12 GC cell lines, and its overexpression in GC tissue was positively correlated with tumor regression in 34 DCS-treated patients. A whole-gene expression array of JMJD2A-knockdown GC cells demonstrated a significant decrease in the expression of pro-apoptotic coiled-coil domain containing 8 (CCDC8), a downstream target of JMJD2A. Direct interaction between CCDC8 and JMJD2A was verified using immunoprecipitation. CCDC8 inhibition restored drug resistance to docetaxel, cisplatin, and S-1.

Conclusions

Our results indicate that JMJD2A is a novel epigenetic factor affecting GC chemotherapeutic susceptibility, and JMJD2A/CCDC8 is a potential GC therapeutic target.

Keywords

Gastric cancer Histone lysine demethylases Jumonji domain-containing protein 2A (JMJD2A) Coiled-coil domain containing 8 (CCDC8) Drug resistance 

Notes

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI [Grant number JP16K19348 and JP18K07942]. We thank Hideaki Horikawa for analysis of microarray data, supported by the Support Center for Advanced Medical Sciences, Tokushima University Graduate School of Biomedical Sciences.

Compliance with ethical standards

Conflict of interest

Tetsuji Takayama received a research fund from TAIHO Pharmaceutical Co., Ltd. (Tokyo, Japan).

Human rights statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions.

Informed consent

Informed consent or a substitute for it was obtained from all patients for being included in the study.

Supplementary material

10120_2019_1024_MOESM1_ESM.pptx (7.3 mb)
Supplementary file1 (PPTX 7463 kb)

References

  1. 1.
    Chi P, Allis CD, Wang GG. Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010;10:457–69.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–12.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell. 2007;25:1–14.CrossRefPubMedGoogle Scholar
  4. 4.
    Berry WL, Janknecht R. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res. 2013;73:2936–42.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48:491–507.CrossRefPubMedGoogle Scholar
  6. 6.
    Berry WL, Shin S, Lightfoot SA, Janknecht R. Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol. 2012;41:1701–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Kogure M, Takawa M, Cho H-S, Toyokawa G, Hayashi K, Tsunoda T, et al. Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G(1)/S transition. Cancer Lett. 2013;336:76–84.CrossRefPubMedGoogle Scholar
  8. 8.
    Mallette FA, Richard S. JMJD2A promotes cellular transformation by blocking cellular senescence through transcriptional repression of the tumor suppressor CHD5. Cell Rep. 2012;2:1233–43.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim T-D, Shin S, Berry WL, Oh S, Janknecht R. The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem. 2012;113:1368–76.CrossRefPubMedGoogle Scholar
  10. 10.
    Kauffman EC, Robinson BD, Downes MJ, Powell LG, Lee MM, Scherr DS, et al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. Mol Carcinog. 2011;50:931–44.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hu C-E, Liu Y-C, Zhang H-D, Huang G-J. JMJD2A predicts prognosis and regulates cell growth in human gastric cancer. Biochem Biophys Res Comm. 2014;449:1–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68:394–424.Google Scholar
  13. 13.
    Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S. Gastric adenocarcinoma. Nat. Rev. Dis. Primers. 2017;3:17036–119.CrossRefPubMedGoogle Scholar
  14. 14.
    Shen L, Shan Y-S, Hu H-M, Price TJ, Sirohi B, Yeh K-H, et al. Management of gastric cancer in Asia: resource-stratified guidelines. Lancet Oncol. 2013;e535–47.Google Scholar
  15. 15.
    Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388:2654–64.CrossRefPubMedGoogle Scholar
  16. 16.
    Takayama T, Sato Y, Sagawa T, Okamoto T, Nagashima H, Takahashi Y, et al. Phase I study of S-1, docetaxel and cisplatin combination chemotherapy in patients with unresectable metastatic gastric cancer. Br J Cancer. 2007.Google Scholar
  17. 17.
    Sato Y, Takayama T, Sagawa T, Takahashi Y, Ohnuma H, Okubo S, et al. Phase II study of S-1, docetaxel and cisplatin combination chemotherapy in patients with unresectable metastatic gastric cancer. Cancer Chemother Pharmacol. 2009;66:721–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Mitsui Y, Sato Y, Miyamoto H, Fujino Y, Takaoka T, Miyoshi J, et al. Trastuzumab in combination with docetaxel/cisplatin/S-1 (DCS) for patients with HER2-positive metastatic gastric cancer: feasibility and preliminary efficacy. Cancer Chemother Pharmacol. 2015;76:375–82.CrossRefPubMedGoogle Scholar
  19. 19.
    Uemura N, Kikuchi S, Sato Y, Ohnuma H, Okamoto K, Miyamoto H, et al. A phase II study of modified docetaxel, cisplatin, and S-1 (mDCS) chemotherapy for unresectable advanced gastric cancer. Cancer Chemother Pharmacol. 2017;80:707–13.CrossRefPubMedGoogle Scholar
  20. 20.
    Sato Y, Ohnuma H, Nobuoka T, Hirakawa M, Sagawa T, Fujikawa K, et al. Conversion therapy for inoperable advanced gastric cancer patients by docetaxel, cisplatin, and S-1 (DCS) chemotherapy: a multi-institutional retrospective study. Gastric Cancer. 2017;20:517–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Ohnuma H, Sato Y, Hirakawa M, et al. Docetaxel, cisplatin and S-1 (DCS) combination chemotherapy for gastric cancer patients with peritoneal metastasis: a retrospective study. Cancer Chemother Pharmacol. 2018;81(3):539–48.CrossRefPubMedGoogle Scholar
  22. 22.
    Koizumi W, Nakayama N, Tanabe S, Sasaki T, Higuchi K, Nishimura K, et al. A multicenter phase II study of combined chemotherapy with docetaxel, cisplatin, and S-1 in patients with unresectable or recurrent gastric cancer (KDOG 0601). Cancer Chemother Pharmacol. 2011;69:407–13.CrossRefPubMedGoogle Scholar
  23. 23.
    Hirakawa M, Sato Y, Ohnuma H, Takayama T, Sagawa T, Nobuoka T, et al. A phase II study of neoadjuvant combination chemotherapy with docetaxel, cisplatin, and S-1 for locally advanced resectable gastric cancer: nucleotide excision repair (NER) as potential chemoresistance marker. Cancer Chemother Pharmacol. 2013;71:789–97.CrossRefPubMedGoogle Scholar
  24. 24.
    Pietrantonio F, De Braud F, Da Prat V, Perrone F, Pierotti MA, Gariboldi M, et al. A review on biomarkers for prediction of treatment outcome in gastric cancer. Anticancer Res. 2013;33:1257–66.PubMedGoogle Scholar
  25. 25.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.CrossRefPubMedGoogle Scholar
  26. 26.
    Kitamura S, Tanahashi T, Aoyagi E, Nakagawa T, Okamoto K, Kimura T, et al. Response predictors of S-1, cisplatin, and docetaxel combination chemotherapy for metastatic gastric cancer: microarray analysis of whole human genes. Oncology. 2017;93:127–35.CrossRefPubMedGoogle Scholar
  27. 27.
    Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011. pp. 101–12.Google Scholar
  28. 28.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;228–47.Google Scholar
  29. 29.
    Human Protein Atlas available from https://www.proteinatlas.org
  30. 30.
    Shi Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet. 2007;8:829–33.CrossRefPubMedGoogle Scholar
  31. 31.
    Cloos PAC, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature. 2006;442:307–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012;13:297–311.CrossRefPubMedGoogle Scholar
  33. 33.
    Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–57.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Guerra-Calderas L, González-Barrios R, Herrera LA, Cantú de León D, Soto-Reyes E. The role of the histone demethylase KDM4A in cancer. Cancer Genet. 2015;208:215–24.Google Scholar
  35. 35.
    Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–37.CrossRefPubMedGoogle Scholar
  36. 36.
    Black JC, Zhang H, Kim J, Getz G, Whetstine JR. Regulation of transient site-specific copy gain by MicroRNA. J Biol Chem. 2016;291:4862–71.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hanson D, Murray PG, O'Sullivan J, Urquhart J, Daly S, Bhaskar SS, et al. Exome sequencing identifies CCDC8 mutations in 3-M syndrome, suggesting that CCDC8 contributes in a pathway with CUL7 and OBSL1 to control human growth. Am J Hum Genet. 2011;89:148–53.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Burkhard P, Stetefeld J, Strelkov SV. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 2001;11:82–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Woolfson DN. The design of coiled-coil structures and assemblies. Adv Protein Chem. 2005;70:79–112.CrossRefPubMedGoogle Scholar
  40. 40.
    Pangeni RP, Channathodiyil P, Huen DS, Eagles LW, Johal BK, Pasha D, et al. The GALNT9, BNC1 and CCDC8 genes are frequently epigenetically dysregulated in breast tumours that metastasise to the brain. Clin Epigenet. 2015;7:57.CrossRefGoogle Scholar
  41. 41.
    Morris MR, Ricketts CJ, Gentle D, McRonald F, Carli N, Khalili H, et al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene. 2011;30:1390–401.CrossRefPubMedGoogle Scholar
  42. 42.
    Jiang G-Y, Zhang X-P, Zhang Y, Xu H-T, Wang L, Li Q-C, et al. Coiled-coil domain-containing protein 8 inhibits the invasiveness and migration of non-small cell lung cancer cells. Hum Pathol. 2016;56:64–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Dai C, Tang Y, Jung SY, Qin J, Aaronson SA, Gu W. Differential effects on p53-mediated cell cycle arrest vs. apoptosis by p90. Proc Natl Acad Sci USA. 2011;108:18937–42.Google Scholar
  44. 44.
    Matsuhashi N, Saio M, Matsuo A, Sugiyama Y, Saji S. The evaluation of gastric cancer sensitivity to 5-FU/CDDP in terms of induction of apoptosis: time- and p53 expression-dependency of anti-cancer drugs. Oncol Rep. 2005;14:609–15.PubMedGoogle Scholar
  45. 45.
    Cortes JE, Pazdur R. Docetaxel. J Clin Oncol. 1995;13:2643–55.CrossRefPubMedGoogle Scholar
  46. 46.
    Bissery MC, Guénard D, Guéritte-Voegelein F, Lavelle F. Experimental antitumor activity of taxotere (RP 56976, NSC 628503), a taxol analogue. Cancer Res. 1991;51:4845–52.PubMedGoogle Scholar
  47. 47.
    Glotzer M. The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol. 2009;10:9–20.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yan J, Yan F, Li Z, Sinnott B, Cappell KM, Yu Y, et al. The 3M complex maintains microtubule and genome integrity. Mol Cell. 2014;54:791–804.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet. 2009;41:125–9.CrossRefPubMedGoogle Scholar

Copyright information

© The International Gastric Cancer Association and The Japanese Gastric Cancer Association 2019

Authors and Affiliations

  • Tadahiko Nakagawa
    • 1
    • 2
  • Yasushi Sato
    • 3
    Email author
  • Toshihito Tanahashi
    • 1
  • Yasuhiro Mitsui
    • 1
  • Yoshifumi Kida
    • 1
  • Yasuteru Fujino
    • 1
  • Misato Hirata
    • 1
  • Shinji Kitamura
    • 1
  • Hiroshi Miyamoto
    • 1
  • Koichi Okamoto
    • 1
  • Naoki Muguruma
    • 1
  • Yoshimi Bando
    • 4
  • Tetsuji Takayama
    • 1
  1. 1.Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
  2. 2.Department of Health and Nutrition, Faculty of Nursing and NutritionThe University of ShimaneShimaneJapan
  3. 3.Department of Community Medicine for Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate School of Biomedical SciencesTokushimaJapan
  4. 4.Division of PathologyTokushima University HospitalTokushimaJapan

Personalised recommendations