Skip to main content
Log in

Scalable Reaction-spinning of Rigid-rod Upilex-S® Type Polyimide Fiber with an Ultrahigh Tg

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In the family of polyimide (PI) materials, Upilex-S® film has been a shining star through the research PI materials due to its appealing merits. Unfortunately, the wholly rigid-rod backbone and easily formed skin-core micromorphology and microvoids of Upilex-S® type PI lead to the high difficulty in melt- and wet-spinning fabrication. Herein, we propose a facile and scalable method, reaction-spinning, to fabricate the Upilex-S® type PI fiber, in which the rapid solidification of spinning dope and partial imidization take place simultaneously. Thus, the stability and mechanical strength of as-spun fibers can be improved, and the microvoids in fibers can be greatly reduced in relative to the wet-spun fibers. The resultant Upilex-S® type PI fiber shows higher tensile strength and modulus than most commercial thermal-oxidative polymeric fibers with an ultrahigh glass transition temperature Tg of 478 °C. Moreover, the WAXS and SAXS results indicate that orthorhombic crystals are formed for Upilex-S® type PI fiber in the post hot-drawing process. Increasing the hot-drawing temperature results in a continuous crystallization and high orientation of PI chains in amorphous phase and perfects the existing lamellar structure, which make a great contribution to the improved mechanical property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chae, H. G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 2006, 100, 791–802.

    Article  CAS  Google Scholar 

  2. Andres Leal, A.; Deitzel, J. M.; Gillespie, J. W. Assessment of compressive properties of high performance organic fibers. Compos. Sci. Technol. 2007, 67, 2786–2794.

    Article  Google Scholar 

  3. Said, M. A.; Dingwall, B.; Gupta, A.; Seyam, A. M.; Mock, G.; Theyson, T. Investigation of ultra violet (UV) resistance for high strength fibers. Adv. Space. Res. 2006, 37, 2052–2058.

    Article  CAS  Google Scholar 

  4. Hu, Z.; Lu, F.; Liu, Y.; Zhao, L.; Yu, L.; Xu, X.; Yuan, W.; Zhang, Q.; Huang, Y. Construction of anti-ultraviolet “shielding clothes” on poly(p-phenylene benzobisoxazole) fibers: metal organic framework-mediated absorption strategy. ACS Appl. Mater. Interfaces 2018, 10, 43262–43274.

    Article  CAS  Google Scholar 

  5. Liu, Y.; Liu, Y.; Tan, H.; Wang, C.; Wei, H.; Guo, Z. Structural evolution and degradation mechanism of Vectran® fibers upon exposure to UV-radiation. Polym. Degrad. Stab. 2013, 98, 1744–1753.

    Article  CAS  Google Scholar 

  6. Dai, X. M.; Gao, H.; Zhang, R.; Du, Z. J.; Shi, T. F.; Ji, X. L.; Qiu, X. P.; Men, Y. F. Preparation and properties of high-performance polyimide copolymer fibers derived from 5-amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole. Chinese J. Polym. Sci. 2019, 37, 478–492.

    Article  CAS  Google Scholar 

  7. Niu, H.; Huang, M.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D. High-performance copolyimide fibers containing quinazolinone moiety: preparation, structure and properties. Polymer 2013, 54, 1700–1708.

    Article  CAS  Google Scholar 

  8. Zhao, Y.; Gao, H.; Li, G. M.; Liu, F. F.; Dai, X. M.; Dong, Z. X.; Qiu, X. P. Synthesis and AO resistant properties of novel polyimide fibers containing phenylphosphine oxide groups in main chain. Chinese J. Polym. Sci. 2019, 37, 59–67.

    Article  CAS  Google Scholar 

  9. Zhao, Y.; Li, G. M.; Liu, F. F.; Dai, X. M.; Dong, Z. X.; Qiu, X. P. Synthesis and properties of novel polyimide fibers containing phosphorus groups in the side chain (DATPPO). Chinese J. Polym. Sci. 2017, 35, 372–385.

    Article  CAS  Google Scholar 

  10. Zhang, M.; Niu, H.; Wu, D. Polyimide fibers with high strength and high modulus: preparation, structures, properties, and applications. Macromol. Rapid Commun. 2018, 39, 1800141.

    Article  Google Scholar 

  11. Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.

    Article  CAS  Google Scholar 

  12. Maier, G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci. 2001, 26, 3–65.

    Article  CAS  Google Scholar 

  13. Fang, Y.; Dong, J.; Zhang, D.; Zhao, X.; Zhang, Q. Preparation of high-performance polyimide fibers via a partial pre-imidization process. J. Mater. Sci. 2019, 54, 3619–3631.

    Article  CAS  Google Scholar 

  14. Gan, F.; Dong, J.; Tang, M.; Li, X.; Li, M.; Zhao, X.; Zhang, Q. High-tenacity and high-modulus polyimide fibers containing benzimidazole and pyrimidine units. React. Funct. Polym. 2019, 141, 112–122.

    Article  CAS  Google Scholar 

  15. Strobl, G. R.; Schneider, M. J.; Voigt-Martin, I. G. Model of partial crystallization and melting derived from small-angle X-ray scattering and electron microscopic studies on low-density polyethylene. J. Polym. Sci., Part B: Polym. Phys. 1980, 18, 1361–1381.

    CAS  Google Scholar 

  16. Shaiju, P.; Murthy, N. S.; Gowd, E. B. Molecular, crystalline, and lamellar length-scale changes in the poly(L-lactide) (PLLA) during cyclopentanone (CPO) desorption in PLLA/CPO cocrystals. Macromolecules 2016, 49, 224–233.

    Article  CAS  Google Scholar 

  17. Seo, Y.; Lee, S. M.; Kim, D. Y.; Kim, K. U. Kinetic study of the imidization of a poly(ester amic acid) by FT-Raman spectroscopy. Macromolecules 1997, 30, 3747–3753.

    Article  CAS  Google Scholar 

  18. Sun, G.; Zhang, M.; Chen, N.; Niu, H.; Qi, S.; Wu, D. Fabrication of ultrahigh-strength polybenzimidazole fibers via a novel and green integrated liquid crystal spinning process. Macromol. Mater. Eng. 2020, 305, 1900717.

    Article  CAS  Google Scholar 

  19. Gu, H. Research on thermal properties of Nomex/Viscose FR fibre blended fabric. Mater. Design. 2009, 30, 4324–4327.

    Article  CAS  Google Scholar 

  20. Luan, J.; Zhang, S.; Geng, Z.; Wang, G. Influence of the addition of lubricant on the properties of poly(ether ether ketone) fibers. Polym. Eng. Sci. 2013, 53, 2254–2260.

    Article  CAS  Google Scholar 

  21. Li, H.; Zhu, Y.; Xu, B.; Wu, C.; Zhao, J.; Dai, M. Preparation and characterization of all para-position polysulfonamide fiber. J. Appl. Polym. Sci. 2013, 127, 342–348.

    Article  CAS  Google Scholar 

  22. Yang, F.; Bai, Y.; Min, B. G.; Kumar, S.; Polk, M. B. Synthesis and properties of star-like wholly aromatic polyester fibers. Polymer 2003, 44, 3837–3846.

    Article  CAS  Google Scholar 

  23. Xu, Y.; Wang, S.; Li, Z.; Xu, Q.; Zhang, Q. Polyimide fibers prepared by dry-spinning process: imidization degree and mechanical properties. J. Mater. Sci. 2013, 48, 7863–7868.

    Article  CAS  Google Scholar 

  24. Luo, L.; Pang, Y.; Jiang, X.; Wang, X.; Zhang, P.; Chen, Y.; Peng, C.; Liu, X. Preparation and characterization of novel polyimide films containing amide groups. J. Polym. Res. 2011, 19, 9783.

    Article  Google Scholar 

  25. Ishige, R.; Masuda, T.; Kozaki, Y.; Fujiwara, E.; Okada, T.; Ando, S. Correction to precise analysis of thermal volume expansion of crystal lattice for fully aromatic crystalline polyimides by X-ray diffraction method: relationship between molecular structure and linear/volumetric thermal expansion. Macromolecules 2017, 50, 2599–2600.

    Article  CAS  Google Scholar 

  26. Yoon, D. Y.; Parrish, W.; Depero, L. E.; Ree, M. Chain conformations of aromatic polvimides and their ordering in thin films. MRS Proceedings 2011, 227, 387.

    Article  Google Scholar 

  27. Ishige, R.; Masuda, T.; Kozaki, Y.; Fujiwara, E.; Okada, T.; Ando, S. Precise analysis of thermal volume expansion of crystal lattice for fully aromatic crystalline polyimides by X-ray diffraction method: Relationship between molecular structure and linear/volumetric thermal expansion. Macromolecules 2017, 50, 2112–2123.

    Article  CAS  Google Scholar 

  28. Northolt, M. G.; Hout, R. V. D. Elastic extension of an oriented crystalline fibre. Polymer 1985, 26, 310–316.

    Article  CAS  Google Scholar 

  29. Murthy, N. S.; Bednarczyk, C.; Moore, R. A. F.; Grubb, D. T. Analysis of small-angle X-ray scattering from fibers: structural changes in nylon 6 upon drawing and annealing. J. Polym. Sci., Part B Polym. Phys. 1996, 34, 821–835.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51903038, 21774019, and 21975040), the Program of Shanghai Academic Research Leader (No. 18XD1400100) and the Scientific Research Innovation Plan of Shanghai Education Commission (No. 2019-01-07-00-03-E00001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Dong or Qing-Hua Zhang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, SS., Dong, H., Wang, SH. et al. Scalable Reaction-spinning of Rigid-rod Upilex-S® Type Polyimide Fiber with an Ultrahigh Tg. Chin J Polym Sci 39, 592–600 (2021). https://doi.org/10.1007/s10118-021-2508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2508-0

Keywords

Navigation