Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Role of Mold Temperature on Morphology and Mechanical Properties of PE Pipe Produced by Rotational Shear

  • 13 Accesses

Abstract

The role of mold temperature on the morphology and properties of rotational shearing polyethylene (PE) pipes was studied via a self-developed rotational shear system (RSS). The result indicated that when the mold temperature was 150 °C, the hoop tensile strength and Vicat softening temperature were enhanced rapidly, which were 383.6% and 137.9% higher than those of the conventional PE pipes, respectively. Morphology and crystal structure studies by SEM and DSC revealed that once the rotational shear was applied, the shish-kebab structure began to appear. With the increase of the mold temperature, due to the relaxation of most of the oriented molecular chains, the preservation of shish-kebab structure became difficult. When the mold temperature was 190 °C, only the inner layer of the pipes, where the cooling rate was the largest, could preserve the shish-kebab structure. According to WAXD, there was less shish structure, and the growth of kebab was distorted in the inner layer of the pipes at 210 °C. The result of SAXS suggested that the length of shish changed most within the temperature range from 170 °C to 190 °C. The results of DSC and WAXD showed less change in crystallinity and degree of orientation between the two temperatures. It can be concluded that the reduction of shish length leads to a decrease in mechanical properties and heat-resistance.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Krushelnitzky, R. P.; Brachman, R. W. I. Buried high-density polyethylene pipe deflections at elevated temperatures. Geotext. Geomembr.2013, 40, 69–77.

  2. 2

    Cai, Z.; Dai, H.; Fu, X. Investigation on the hot melting temperature field simulation of HDPE water supply pipeline in gymnasium pool. Results Phys.2018, 9, 1050–1056.

  3. 3

    He, X.; Zha, X.; Xiao, Z.; Xin, Q.; Liu, B. J. Effect of short chain branches distribution on fracture behavior of polyethylene pipe resins. Polym. Test.2018, 68, 219–228.

  4. 4

    Kmetty, Á.; Bárány, T.; Karger-Kocsis. Self-reinforced polymeric materials: a review. Prog. Polym. Sci.2010, 35, 1288–1310.

  5. 5

    Alcock, B.; Peijs, T. Technology and development of self-reinforced polymer composites. Polym. Compos.2013, 251, 1–76.

  6. 6

    Li, Y. B.; Shen, K. Z.; Huang, H. Self-toughening and self-reinforcing injection-molded isotactic polypropylene via vibration injection molding. J. Macromol. Sci. Part B-Phys. 2004, 36, 55–58.

  7. 7

    Li, Y. T.; Chen, G. S.; Guo, S. Y.; Li, H. L. Studies on rheological behavior and structure development of high-density polyethylene in the presence of ultrasonic oscillations during extrusion. Polym. Compos.2006, 45, 39–52.

  8. 8

    Gao, X., Zhang, J., Chen, C. Effect of vibration extrusion on high-density polyethylene. J. Appl. Polym. Sci2010, 106, 552–557.

  9. 9

    Lei, J.; Jiang, C.; Shen, K. Biaxially self-reinforced high-density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties. J. Appl. Polym. Sci.2010, 93, 1584–1590.

  10. 10

    Martin, J.; Margueron, S.; Fontana, M.; Cochez, M.; Bourson, P. Science study of the molecular orientation heterogeneity in polypropylene injection-molded parts by Raman spectroscopy. Polym. Eng. Sci.2010, 50, 138–143.

  11. 11

    Nie, M.; Wang, Q.; Bai, S. Science morphology and property of polyethylene pipe extruded at the low mandrel rotation. Polym. Eng. Sci.2010, 50, 1743–1750.

  12. 12

    Haddad, Y. M. Mechanical behaviour of engineering materials. Springer Berlin, Heidelberg, 2000, 55, B107–B108.

  13. 13

    Groos, B. 1964, UK Pat. 946,371.

  14. 14

    Chung, B.; Zachariades, A. E. Science morphological and mechanical property studies of polymer extrudates obtained by the rotational extrusion process. Polym. Eng. Sci.1989, 99, 1511–1515.

  15. 15

    Han, R.; Nie, M.; Wang, Q. Control over β-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly β nucleating agent and rotation extrusion. J. Taiwan Inst. Chem. Eng.2015, 52, 158–164.

  16. 16

    Long, J.; Shen, K.; Ji, J.; Guan, Q. A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement. J. Appl. Polym. Sci.2015, 69, 323–328.

  17. 17

    Han, R.; Nie, M.; Bai, S, B.; Wang, Q. Control over crystalline form in polypropylene pipe via mandrel rotation extrusion. Polym. Bull.2013, 70, 2083–2096.

  18. 18

    Nie, M.; Li, X.; Hu, X.; Wang, Q. Effect of die temperature on morphology and performance of polyethylene pipe prepared via mandrel rotation extrusion. J. Macromol. Sci. Part B-Phys.2014, 53, 1442–1452.

  19. 19

    Guo, Y.; Wang, Q.; Bai, S. The effect of rotational extrusion on the structure and properties of HDPE pipes. Polym. Plast. Technol. Eng.2010, 49, 908–915.

  20. 20

    Min, N.; Bai, S.; Wang, Q. Effect of the inner wall cooling rate on the structure and properties of a polyethylene pipe extruded at a high rotation speed. J. Appl. Polym. Sci.2010, 119, 1659–1666.

  21. 21

    Doufas, A. K.; Dairanieh, I. S.; Mchugh, A. J. A continuum model for flow-induced crystallization of polymer melts. J. Rheol. Macromolecules1998, 43, 85–109.

  22. 22

    Coppola, S.; Grizzuti, N.; Maffettone, P. L. Microrheological modeling of flow-induced crystallization. Macromolecules2001, 34, 5030–5036.

  23. 23

    Dlugosz, J.; Grubb, D. T.; Keller, A.; Rhodes, M. B. Morphological verification of “Row nucleation” in isotactic polystyrene; evidence for single crystals within the bulk. J. Mater. Sci.1972, 7, 142–147.

  24. 24

    Ju, J.; Wang, Z.; Su, F.; Ji, Y.; Yang, H.; Chang, J.; Ali, S.; Li, X. Extensional flow-induced dynamic phase transitions in isotactic polypropylene. Macromol. Rapid Commun.2016, 37, 1441–1445.

  25. 25

    Phillips, A. W.; Bhatia, A.; Zhu, P. W.; Edward, G. Shish formation and relaxation in sheared isotactic polypropylene containing nucleating particles. Macromolecules2011, 44, 3517.

  26. 26

    Kanaya, T.; Polec, I. A.; Fujiwara, T.; Inoue, R.; Nishida, K.; Matsuura, T.; Ogawa, H.; Ohta, N. Precursor of shish-kebab above the melting temperature by microbeam X-ray scattering. Macromolecules2013, 46, 3031–3036.

  27. 27

    Azzurri, F.; Alfonso, G. C. Insights into formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene. Macromolecules2008, 41, 1155–1167.

  28. 28

    Somani, R. H.; Yang, L.; Zhu, L. Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer2005, 46, 8587–8623.

  29. 29

    Zhou, D.; Yang, S. G.; Lei, J.; Hsiao, B. S.; Li, Z. M. Role of stably entangled chain network density in shish-kebab formation in polyethylene under an intense flow field. Macromolecules2015, 48, 6652–6661.

  30. 30

    Rathee, V.; Krishnaswamy, R.; Pal, A.; Raghunathan, V. A.; Imperor-Clerc, M.; Pansu, B.; Sood, A. K. Reversible shear-induced crystallization above equilibrium freezing temperature in a lyotropic surfactant system. Proc. Nat. Acad. Sci. India A2013, 110, 14849–14854.

  31. 31

    Wang, Z.; Ju, J.; Yang, J.; Ma, Z.; Liu, D.; Cui, K.; Yang, H.; Chang, J.; Huang, N.; Li, L. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene. Sci. Rep.2016, 6, 32968.

  32. 32

    Rueda, D. R.; Ania, F. A USAXS study of melt processed PE with a shish-kebab structure: the influence of temperature on the long periods. Polymer1997, 38, 2027–2032.

  33. 33

    Jiang, Z.; Tang, Y.; Rieger, J.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Wu, Z.; Li, Z. Structural evolution of melt-drawn transparent high-density polyethylene during heating and annealing: synchrotron small-angle X-ray scattering study. Eur. Polym. J.2010, 46, 1866–1877.

  34. 34

    Wang, H.; Song, H. D.; Zou, E. G.; Ge, T. J.; Fang, H. Study on the molecular structure and the performance of PE100 resin for tubing. Adv. Mater. Res. 2014, 850–851, 70–73.

  35. 35

    Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M. Molecular basis of the shish-kebab morphology in polymer crystallization. Science2007, 316, 1014–1017.

  36. 36

    Xia, X. C.; Yang, W.; Zhang, Q. P.; Wang, L.; He, S.; Yang, M. Large scale formation of various highly oriented structures in polyethylene/polycarbonate microfibril blends subjected to secondary melt flow. Polymer2014, 55, 6399–6408.

  37. 37

    Yang, H. R.; Lei, J.; Li, L.; Fu, Q. Formation of interlinked shish-kebabs in injection-molded polyethylene under the coexistence of lightly cross-linked chain network and oscillation shear flow. Macromolecules2012, 45, 6600–6610.

  38. 38

    Huang, Y. F.; Xu, J. Z.; Xu, J. Y.; Zhang, Z. C.; Hsiao, B. S.; Xu, L.; Li, Z. M. Self-reinforced polyethylene blend for artificial joint application. J. Mater. Chem. B2014, 2, 971–980.

  39. 39

    Keum, J. K.; Zuo, F.; Hsiao, B. S. J. M. Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules2008, 41, 4766–4776.

  40. 40

    Schrauwen, B. A. G.; Breemen, L. C. A. V.; Spoelstra, A. B.; Govaert, L. E.; Peters, G. W. M.; Meijer, H. Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules2004, 37, 8618–8633.

  41. 41

    Wang, Z.; Mao, Y.; Jarumaneeroj, C.; Thitisak, B.; Tiyapiboonchaiya, P.; Rungswang, W.; Hsiao, B. S. The influence of short chain branch on formation of shish-kebab crystals in bimodal polyethylene under shear at high temperatures. J. Polym. Sci., Part B: Polym. Phys.2018, 56, 786–794.

  42. 42

    Hsiao, B. S.; Yang, L.; Somani, R. H.; Zhu, L. Unexpected shish-kebab structure in a sheared polyethylene melt. Phys. Rev. Lett.2005, 94, 117802.

  43. 43

    Liu, D.; Tian, N.; Cui, K.; Zhou, W.; Li, X.; Li, L. Correlation between flow-induced nucleation morphologies and strain in polyethylene: from uncorrelated oriented point-nuclei, scaffold-network, and microshish to shish. Macromolecules2013, 66, 3435–3443.

  44. 44

    Balzano, L.; Rastogi, S.; Peters, G. W. M. Crystallization and precursors during fast short-term shear. Macromolecules2009, 42, 2088–2092.

Download references

Acknowledgments

The work was financially supported by the Science and Technology Program of Sichuan Province, China (No. 2018G20332) and the National Natural Science Foundation of China (No. 21627804).

Author information

Correspondence to Xue-Qin Gao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Yang, H., Luo, X. et al. The Role of Mold Temperature on Morphology and Mechanical Properties of PE Pipe Produced by Rotational Shear. Chin J Polym Sci (2019). https://doi.org/10.1007/s10118-020-2363-4

Download citation

Keywords

  • Shish-kebab
  • Rotational shear
  • Mold temperature
  • PE pipe