The Crystallization and Melting Behaviors of PDLA-b-PBS-b-PDLA Triblock Copolymers

  • Cong-Shu Feng
  • Yun Chen
  • Jun ShaoEmail author
  • Gao Li
  • Hao-Qing HouEmail author


In this study, the poly(D-lactide)-block-poly(butylene succinate)-block-poly(D-lactide) (PDLA-b-PBS-b-PDLA) triblock copolymers with a fixed length of PBS and various lengths of PDLA are synthesized, and the crystallization behaviors of the PDLA and PBS blocks are investigated. Although both the crystallization behaviors of PBS and PDLA blocks depend on composition, they exhibit different variations. For the PDLA block, its crystallization behaviors are mainly influenced by temperature and block length. The crystallization signals of PDLA block appear in the B-D 2-2 specimen, and these signals get enhanced with PDLA block length. The crystallization rates tend to decrease with increasing PDLA block lendth during crystallizing at 90 and 100 °C. Crystallizing at higher temperature, the crystallization rates increase at first and then decrease with block length. The crystallization rates decrease as elevating the crystallization temperature. The melting temperatures of PDLA blocks increase with block lengths and crystallization temperatures. For the PBS block, its crystallization behaviors are mainly controlled by the nucleation and confinement from PDLA block. The crystallization and melting enthalpies as well as the crystallization and melting temperatures of PBS block reduce as a longer PDLA block has been copolymerized, while the crystallization rates of the PBS block exhibit unique component dependence, and the highest rate is observed in the B-D 2-2 specimen. The Avrami exponent of PBS crystallites is reduced as a longer PDLA block is incorporated or the sample is crystallized at higher temperature. This investigation provides a convenient route to tune the crystallization behavior of PBS and PLA.


Poly(butylenes succinate) (PBS) Poly(D-lactide) (PDLA) Poly(D-lactide)-block-PBS-block-poly(D-lactide) (PDLA-b-PBS-b-PDLA) Crystallization behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51403089, 51373169, 21574060, and 21374044), the Major Special Projects of Jiangxi Provincial Department of Science and Technology (No. 20114ABF05100), the Project of Jiangxi Provincial Department of Education (No. GJJ170229), the Technology Plan Landing Project of Jiangxi Provincial Department of Education (No. GCJ2011-243), the Outstanding Youth Foundation of Jiangxi Normal University, China Postdoctoral Science Foundation (No. 2019M652282), and Postdoctoral Science Foundation of Jiangxi Province (No. 2018KY37).

Supplementary material

10118_2020_2361_MOESM1_ESM.pdf (581 kb)
The Crystallization and Melting Behaviors of PDLA-b-PBS-b-PDLA Triblock Copolymers


  1. 1.
    Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresource Technol.2010, 101, 8493–8501.CrossRefGoogle Scholar
  2. 2.
    Inkinen, S.; Hakkarainen, M.; Albertsson, A. C.; Södergård, A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules2011, 12, 523–532.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Jem, K. J.; van der Pol, J.; de Vos, S. Microbial lactic acid, its polymer poly(lactic acid), and their industrial applications. In Plastics from Bacteria, Ed. by Chen, G. G. Q. Springer Berlin Heidelberg, 2010, Vol. 14, pp. 323–346.CrossRefGoogle Scholar
  4. 4.
    Pang, X.; Zhuang, X.; Tang, Z.; Chen, X. Polylactic acid (PLA): research, development and industrialization. Biotechnol. J.2010, 5, 1125–1136.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci.2012, 37, 1657–1677.CrossRefGoogle Scholar
  6. 6.
    Xu, J.; Guo, B. H. Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol. J.2010, 5, 1149–1163.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Gigli, M.; Fabbri, M.; Lotti, N.; Gamberini, R.; Rimini, B.; Munari, A. Poly(butylene succinate)-based polyesters for biomedical applications: a review. Eur. Polym. J.2016, 75, 431–460.CrossRefGoogle Scholar
  8. 8.
    Deng, Y.; Thomas, N. L. Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur. Polym. ULJ.2015, 71, 534–546.CrossRefGoogle Scholar
  9. 9.
    Wuk, P. J.; Soon, I. S. Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate). J. Appl. Polym. Sci.2002, 86, 647–655.CrossRefGoogle Scholar
  10. 10.
    Wu, D.; Yuan, L.; Laredo, E.; Zhang, M.; Zhou, W. Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind. Eng. Chem. Res.2012, 51, 2290–2298.CrossRefGoogle Scholar
  11. 11.
    Yokohara, T.; Yamaguchi, M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J.2008, 44, 677–685.CrossRefGoogle Scholar
  12. 12.
    Stoyanova, N.; Paneva, D.; Mincheva, R.; Toncheva, A.; Manolova, N.; Dubois, P.; Rashkov, I. Poly(L-lactide) and poly(butylene succinate) immiscible blends: from electrospinning to biologically active materials. Mater. Sci. Eng. C2014, 41, 119–126.CrossRefGoogle Scholar
  13. 13.
    Olivier, P.; Robert, Q.; Yahia, L.; John, S.; Stuart, M.; Leïla, B.; Philippe, D. Reactive compatibilization of poly(L-lactide)/poly(butylene succinate) blends through polyester maleation: From materials to properties. Polym. Int.2014, 63, 1724–1731.CrossRefGoogle Scholar
  14. 14.
    Chen, G. X.; Kim, H. S.; Kim, E. S.; Yoon, J. S. Compatibilization-like effect of reactive organoclay on the poly(L-lactide)/poly(butylene succinate) blends. Polymer2005, 46, 11829–11836.CrossRefGoogle Scholar
  15. 15.
    Tadashi, Y.; Kenzo, O.; Masayuki, Y. Effect of the shape of dispersed particles on the thermal and mechanical properties of biomass polymer blends composed of poly(L-lactide) and poly(butylene succinate). J. Appl. Polym. Sci.2010, 117, 2226–2232.CrossRefGoogle Scholar
  16. 16.
    Zhang, X.; Zhang, Y. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohyd. Polym.2016, 140, 374–382.CrossRefGoogle Scholar
  17. 17.
    Masaki, H.; Tsubasa, O.; Kouji, I.; Hideki, H.; Koji, H.; Hiroyuki, F. Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J. Appl. Polym. Sci.2007, 106, 1813–1820.CrossRefGoogle Scholar
  18. 18.
    Zhang, B.; Bian, X.; Xiang, S.; Li, G.; Chen, X. Synthesis of PLLA-based block copolymers for improving melt strength and toughness of PLLA by in situ reactive blending. Polym. Degrad. Stab.2017, 136, 58–70.CrossRefGoogle Scholar
  19. 19.
    Valerio, O.; Misra, M.; Mohanty, A. K. Statistical design of sustainable thermoplastic blends of poly(glycerol succinate-co-maleate) (PGSMA), poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). Polym. Test.2018, 65, 420–428.CrossRefGoogle Scholar
  20. 20.
    Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Poly(L-lactide-b-butylene succinate-b-L-lactide) triblock copolymer: a multi-functional additive for PLA/PBS blend with a key performance on film clarity. Polym. Degrad. Stab.2017, 142, 160–168.CrossRefGoogle Scholar
  21. 21.
    Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer2016, 105, 1–9.CrossRefGoogle Scholar
  22. 22.
    Liu, Y.; Shao, J.; Sun, J.; Bian, X.; Chen, Z.; Li, G.; Chen, X. Toughening effect of poly(D-lactide)-b-poly(butylene succinate)-b-poly(D-lactide) copolymers on poly(L-lactic acid) by solution casting method. Mater. Lett.2015, 155, 94–96.CrossRefGoogle Scholar
  23. 23.
    Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N. Crystallization and melting behavior of poly(L-lactic acid). Macromolecules2007, 40, 9463–9469.CrossRefGoogle Scholar
  24. 24.
    Li, S. Non-isothermal crystallization kinetics of poly(L-lactide). Polym. Int.2010, 59, 1616.CrossRefGoogle Scholar
  25. 25.
    Xiang, S.; Jun, S.; Li, G.; Bian, X. C.; Feng, L. D.; Chen, X. S.; Liu, F. Q.; Huang, S. Y. Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide). Chinese J. Polym. Sci.2016, 34, 69–76.CrossRefGoogle Scholar
  26. 26.
    Liu, X. Q.; Li, C. C.; Zhang, D.; Xiao, Y. N. Melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) and its copolyester modified with rosin maleopimaric acid anhydride. J. Polym. Sci., Part B: Polym. Phys.2006, 44, 900–913.CrossRefGoogle Scholar
  27. 27.
    Gan, Z.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules2001, 2, 605–613.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Park, J. W.; Kim, D. K.; Im, S. S. Crystallization behaviour of poly(butylene succinate) copolymers. Polym. Int.2002, 51, 239–244.CrossRefGoogle Scholar
  29. 29.
    Park, S. B.; Hwang, S. Y.; Moon, C. W.; Im, S. S.; Yoo, E. S. Plasticizer effect of novel PBS ionomer in PLA/PBS ionomer blends. Macromol. Res.2010, 18, 463–471.CrossRefGoogle Scholar
  30. 30.
    Pivsa-Art, W.; Fujii, K.; Nomura, K.; Aso, Y.; Ohara, H.; Yamane, H. Isothermal crystallization kinetics of talc-filled poly(lactic acid) and poly(butylene succinate) blends. J. Polym. Res.2016, 23, 144.CrossRefGoogle Scholar
  31. 31.
    Ba, C.; Yang, J.; Hao, Q.; Liu, X.; Cao, A. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules2003, 4, 1827–1834.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lan, X.; Li, X.; Liu, Z.; He, Z.; Yang, W.; Yang, M. Composition, morphology and properties of poly(lactic acid) and poly(butylene succinate) copolymer system via coupling reaction. J. Macromol. Sci.2013, 50, 861–870.CrossRefGoogle Scholar
  33. 33.
    Lin, J.; Yin, L. Z.; Li, Y.; Li, Q. B.; Yang, J.; Yu, J. Y.; Shi, Z.; Fang, Q.; Cao, A. New enantiomeric polylactide-block-poly(butylene succinate)-block-polylactides: syntheses, characterization and in situ self-assembly. Macromol. Biosci.2005, 5, 526–538.CrossRefGoogle Scholar
  34. 34.
    Zeng, J. B.; Li, Y. D.; Zhu, Q. Y.; Yang, K. K.; Wang, X. L.; Wang, Y. Z. A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer2009, 50, 1178–1186.CrossRefGoogle Scholar
  35. 35.
    Müller, A. J.; Balsamo, V.; Arnal, M. L. Nucleation and crystallization in diblock and triblock copolymers. In Block copolymers II, Abetz, V., 1st Ed. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 1–63.Google Scholar
  36. 36.
    Castillo, R. V.; Müller, A. J.; Raquez, J. M.; Dubois, P. Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules2010, 43, 4149–4160.CrossRefGoogle Scholar
  37. 37.
    Castillo, R. V.; Müller, A. J. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog. Polym. Sci.2009, 34, 516–560.CrossRefGoogle Scholar
  38. 38.
    Zhou, D.; Shao, J.; Li, G.; Sun, J.; Bian, X.; Chen, X. Crystallization behavior of PEG/PLLA block copolymers: effect of the different architectures and molecular weights. Polymer2015, 62, 70–76.CrossRefGoogle Scholar
  39. 39.
    Chen, C. H.; Peng, J. S.; Chen, M.; Lu, H. Y.; Tsai, C. J.; Yang, C. S. Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym. Sci.2010, 288, 731–738.CrossRefGoogle Scholar
  40. 40.
    Shao, J.; Tang, Z. H.; Sun, J. R.; Li, G.; Chen, X. S. Linear and four-armed poly(L-lactide)-block-poly(D-lactide) copolymers and their stereocomplexation with poly(lactide)s. J. Polym. Sci., Part B: Polym. Phys.2014, 52, 1560–1567.CrossRefGoogle Scholar
  41. 41.
    Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys.1940, 8, 212–224.CrossRefGoogle Scholar
  42. 42.
    Avrami, M. Kinetics of phase change. I. General theory. J. Chem. Phys.1939, 7, 1103–1112.CrossRefGoogle Scholar
  43. 43.
    Yin, H. Y.; Wei, X. F.; Bao, R. Y.; Dong, Q. X.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. High-melting-point crystals of poly(L-lactic acid) (PLLA): the most efficient nucleating agent to enhance the crystallization of PLLA. CrystEngComm2015, 17, 2310–2320.CrossRefGoogle Scholar
  44. 44.
    Huang, C. I.; Tsai, S. H.; Chen, C. M. Isothermal crystallization behavior of poly(L-lactide) in poly(L-lactide)-block-poly(ethylene glycol) diblock copolymers. J. Polym. Sci., Part B: Polym. Phys.2006, 44, 2438–2448.CrossRefGoogle Scholar
  45. 45.
    Yang, J.; Zhao, T.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Isothermal crystallization behavior of the poly(L-lactide) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: influence of the PEG block as a diluted solvent. Polym. J.2006, 38, 1251–1257.CrossRefGoogle Scholar
  46. 46.
    Yang, J.; Zhao, T.; Cui, J.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: Effect of the poly(L-lactide) block length. J. Polym. Sci., Part B: Polym. Phys.2006, 44, 3215–3226.CrossRefGoogle Scholar
  47. 47.
    Hamley, I. W.; Castelletto, V.; Castillo, R. V.; Müller, A. J.; Martin, C. M.; Pollet, E.; Dubois, P. Crystallization in poly(L-lactide)-b-poly(ε-caprolactone) double crystalline diblock copolymers: a study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. Macromolecules2005, 38, 463–472.CrossRefGoogle Scholar
  48. 48.
    Hu, J.; Xin, R.; Hou, C. Y.; Yan, S. K.; Liu, J. C. Direct comparison of crystal nucleation activity of PCL on patterned substrates. Chinese J. Polym. Sci.2019, 37, 693–699.CrossRefGoogle Scholar
  49. 49.
    Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K. I.; Tsuji, H.; Hyon, S. H.; Ikada, Y. Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). J. Macromol. Sci. Part B1991, 30, 119–140.CrossRefGoogle Scholar
  50. 50.
    Ihn, K. J.; Yoo, E. S.; Im, S. S. Structure and morphology of poly(tetramethylene succinate) crystals. Macromolecules1995, 28, 2460–2464.CrossRefGoogle Scholar
  51. 51.
    Bittiger, H.; Marchessault, R. H.; Niegisch, W. D. Crystal structure of poly-ε-caprolactone. Acta Cryst. B1970, 26, 1923–1927.CrossRefGoogle Scholar
  52. 52.
    Takahashi, Y.; Tadokoro, H. Structural studies of polyethers, (-(CH2)m-O-)n. X. Crystal structure of poly(ethylene oxide). Macromolecules1973, 6, 672–675.CrossRefGoogle Scholar
  53. 53.
    Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules2005, 38, 8012–8021.CrossRefGoogle Scholar
  54. 54.
    Michell, R. M.; Müller, A. J.; Spasova, M.; Dubois, P.; Burattini, S.; Greenland, B. W.; Hamley, I. W.; Hermida-Merino, D.; Cheval, N.; Fahmi, A. Crystallization and stereocomplexation behavior of poly(D- and L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers. J. Polym. Sci., Part B: Polym. Phys.2011, 49, 1397–1409.CrossRefGoogle Scholar
  55. 55.
    Sarasua, J. R.; Prud’homme, R. E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and melting behavior of polylactides. Macromolecules1998, 31, 3895–3905.CrossRefGoogle Scholar
  56. 56.
    Di Lorenzo, M. L. Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J. Appl. Polym. Sci.2006, 100, 3145–3151.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of chemistry and chemical engineeringJiangxi Normal UniversityNanchangChina
  2. 2.Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal UniversityNanchangChina
  3. 3.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations