Hierarchically Crosslinked Gels Containing Hydrophobic Ionic Liquids towards Reliable Sensing Applications

  • Xia-Chao ChenEmail author
  • Pei-Ru Sun
  • Hong-Liang LiuEmail author


Human skin can function steadily regardless of surrounding circumstances (dry or wet), while it is still a challenge for artificial ionic skins, which tend to release solvents in dry air and leach electrolytes in wetted state. Herein, a series of hierarchically crosslinked ionogels containing hydrophobic ionic liquids (ILs) is fabricated by combining a crystalline fluorinated copolymer with hydrophobic ILs. With a reasonable combination of nonvolatility, transparency, stretchablility, and sensitivity, such ionogels can work as reliable sensors for real-time monitoring human motions and operate steadily in complex environments as human skin does, which can contribute to the development of durable sensing devices with a simple design.


Ionogels Conductivity Hydrophobicity Strain sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21875268 and 51276009), National Research Fund for Fundamental Key Projects (Nos. 2013CB933000 and 2012CB933800), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M01, KJZD-EW-M03), the 111 project (No. B14009), Youth Innovation Promotion Association, CAS (No. 2016026), and the China Postdoctoral Science Foundation (No. 2019M650435).

Supplementary material

10118_2020_2357_MOESM1_ESM.pdf (1.9 mb)
Hierarchically Crosslinked Gels Containing Hydrophobic Ionic Liquids towards Reliable Sensing Applications


  1. 1.
    Wang, J.; Lin, M. F.; Park, S.; Lee, P. S. Deformable conductors for human-machine interface. Mater. Today2018, 21, 508–526.CrossRefGoogle Scholar
  2. 2.
    Qian, Y.; Zhang, X.; Xie, L.; Qi, D.; Chandran, B. K.; Chen, X.; Huang, W. Stretchable organic semiconductor devices. Adv. Mater.2016, 28, 9243–9265.CrossRefGoogle Scholar
  3. 3.
    Oh, J. Y.; Kim, S.; Baik, H. K.; Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater.2016, 28, 4455–4461.CrossRefGoogle Scholar
  4. 4.
    Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. Stretchable, transparent, ionic conductors. Science2013, 341, 984–987.CrossRefGoogle Scholar
  5. 5.
    Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science2016, 351, 1071–1074.CrossRefGoogle Scholar
  6. 6.
    Kim, C C.; Lee, H. H.; Oh, K. H.; Sun, J. Y. Highly stretchable, transparent ionic touch panel. Science2016, 353, 682–687.CrossRefGoogle Scholar
  7. 7.
    Yang, C. H.; Chen, B.; Zhou, J.; Chen, Y. M.; Suo, Z. Electroluminescence of giant stretchability. Adv. Mater.2016, 28, 4480–4484.CrossRefGoogle Scholar
  8. 8.
    Chen, L.; Yin, Y. A.; Liu, Y. X.; Lin, L.; Liu, M. J. Design and fabrication of functional hydrogels through interfacial engineering. Chinese J. Polym. Sci.2017, 35, 1181–1193.CrossRefGoogle Scholar
  9. 9.
    Shi, F. K.; Zhong, M.; Zhang, L. Q.; Liu, X. Y.; Xie, X. M. Toughening mechanism of nanocomposite physical hydrogels fabricated by a single gel network with dual crosslinking—the roles of the dual crosslinking points. Chinese J. Polym. Sci.2017, 35, 25–35.CrossRefGoogle Scholar
  10. 10.
    Lei, Z.; Wu, P. A Supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun.2018, 9, 1134.CrossRefGoogle Scholar
  11. 11.
    Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater.2017, 29, 1700321.CrossRefGoogle Scholar
  12. 12.
    Lee, H. R.; Kim, C. C.; Sun, J. Y. Stretchable ionics—a promising candidate for upcoming wearable devices. Adv. Mater.2018, 30, 1704403.CrossRefGoogle Scholar
  13. 13.
    Bai, Y.; Chen, B.; Xiang, F.; Zhou, J.; Wang, H.; Suo, Z. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett.2014, 105, 151903.CrossRefGoogle Scholar
  14. 14.
    Zhang, J. Z.; Xiao, C. S.; Wang, J. C.; Zhuang, X. L.; Chen, X. S. Photo cross-linked biodegradable hydrogels for enhanced vancomycin loading and sustained release. Chinese J. Polym. Sci.2013, 31, 1697–1705.CrossRefGoogle Scholar
  15. 15.
    Zhao, Z. G.; Xu, Y. C.; Fang, R. C.; Liu, M. J. Bioinspired adaptive gel materials with synergistic heterostructures. Chinese J. Polym. Sci.2018, 36, 683–696.CrossRefGoogle Scholar
  16. 16.
    Yuk, H.; Zhang, T.; Parada, G. A.; Liu, X.; Zhao, X. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun.2016, 7, 12028.CrossRefGoogle Scholar
  17. 17.
    Chen, S.; Liu, H.; Liu, S.; Wang, P.; Zeng, S.; Sun, L.; Liu, L. Transparent and waterproof ionic liquid-based fibers for highly durable multifunctional sensors and strain-insensitive stretchable conductors. ACS Appl. Mater. Interfaces2018, 10, 4305–4314.CrossRefGoogle Scholar
  18. 18.
    Kamio, E.; Yasui, T.; Iida, Y.; Gong, J. P.; Matsuyama, H. Inorganic/organic double-network gels containing ionic liquids. Adv. Mater.2017, 29, 1704118.CrossRefGoogle Scholar
  19. 19.
    Ding, Y.; Zhang, J.; Chang, L.; Zhang, X.; Liu, H.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater.2017, 29, 1704253.CrossRefGoogle Scholar
  20. 20.
    Chen, B.; Lu, J. J.; Yang, C. H.; Yang, J. H.; Zhou, J.; Chen, Y. M.; Suo, Z. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl. Mater. Interfaces2014, 6, 7840–7845.CrossRefGoogle Scholar
  21. 21.
    Freire, M. G.; Carvalho, P. J.; Gardas, R. L.; Marrucho, I. M.; Santo, L. M. N. B. F.; Coutinho, J. A. P. Mutual solubilities of water and the [CnMIm][Tf2n] hydrophobic ionic liquids. J. Phys. Chem. B2008, 112, 1604–1610.CrossRefGoogle Scholar
  22. 22.
    Yee, P.; Shah, J. K.; Maginn, E. J. State of hydrophobic and hydrophilic ionic liquids in aqueous solutions: are the ions fully dissociated? J. Phys. Chem. B2013, 117, 12556–12566.CrossRefGoogle Scholar
  23. 23.
    Thomas, M. L.; Oda, Y.; Tatara, R.; Kwon, H. M.; Ueno, K.; Dokko, K.; Watanabe, M. Suppression of water absorption by molecular design of ionic liquid electrolyte for Li-Air battery. Adv. Energy Mater.2017, 7, 1601753.CrossRefGoogle Scholar
  24. 24.
    Ameduri, B. From vinylidene fluoride (Vdf) to the applications of Vdf-containing polymers and copolymers: recent developments and future trends. Chem. Rev.2009, 109, 6632–6686.CrossRefGoogle Scholar
  25. 25.
    Lin, D. J.; Lin, C. L.; Guo, S Y. Network nano-porous poly(vinylidene fluoride-co-hexafluoropropene) membranes by nano-gelation assisted phase separation of poly(vinylidene fluoride-co-hexafluoropropene)/poly(methyl methacrylate) blend precursor in toluene. Macromolecules2012, 45, 8824–8832.CrossRefGoogle Scholar
  26. 26.
    Ueki, T.; Watanabe, M. Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules2008, 41, 3739–3749.CrossRefGoogle Scholar
  27. 27.
    Fujii, K.; Asai, H.; Ueki, T.; Sakai, T.; Imaizumi, S.; Chung, U. I.; Watanabe, M.; Shibayama, M. High-performance ion gel with tetra-PEG network. Soft Matter2012, 8, 1756–1759.CrossRefGoogle Scholar
  28. 28.
    Xing, C.; Zhao, M.; Zhao, L.; You, J.; Cao, X.; Li, Y. Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym. Chem. 2013, 4, 5726–5734.CrossRefGoogle Scholar
  29. 29.
    Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C. A Transparent, self-healing, highly stretchable ionic conductor. Adv. Mater.2017, 29, 1605099.CrossRefGoogle Scholar
  30. 30.
    Liang, C. L.; Mai, Z. H.; Xie, Q.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Induced formation of dominating polar phases of poly(vinylidene fluoride): positive ion-CF2 dipole or negative ion-CH2 dipole interaction. J. Phys. Chem. B2014, 118, 9104–9111.CrossRefGoogle Scholar
  31. 31.
    Sun, J. Y.; Keplinger, C.; Whitesides, G. M.; Suo, Z. Ionic skin. Adv. Mater.2014, 26, 7608–7614.CrossRefGoogle Scholar
  32. 32.
    Jin, M. L.; Park, S.; Kim, J. S.; Kwon, S. H.; Zhang, S.; Yoo, M. S.; Jang, S.; Koh, H. J.; Cho, S. Y.; Kim, S. Y.; Ahn, C. W.; Cho, K.; Lee, S. G.; Kim, D. H.; Jung, H. T. An ultrastable ionic chemiresistor skin with an intrinsically stretchable polymer electrolyte. Adv. Mater.2018, 30, 1706851.CrossRefGoogle Scholar
  33. 33.
    Sousa, R. E.; Nunes-Pereira, J.; Ferreira, J. C. C.; Costa, C. M.; Machado, A. V.; Silva, M. M.; Lanceros-Mendez, S. Microstructural variations of poly(vinylidene fluoride-co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polym. Test.2014, 40, 245–255.CrossRefGoogle Scholar
  34. 34.
    Ding, Y.; Zhang, J.; Zhang, X.; Zhou, Y.; Wang, S.; Liu, H.; Jiang, L. Ionic-liquid-gel surfaces showing easy-sliding and ultradurable features. Adv. Mater. Interfaces2015, 2, 1500177.CrossRefGoogle Scholar
  35. 35.
    Kofu, M.; Someya, T.; Tatsumi, S.; Ueno, K.; Ueki, T.; Watanabe, M.; Matsunaga, T.; Shibayama, M.; Sakai, V. G.; Tyagi, M.; Yamamuro, O. Microscopic insights into ion gel dynamics using neutron spectroscopy. Soft Matter2012, 8, 7888–7897.CrossRefGoogle Scholar
  36. 36.
    Ahmad, A. L.; Farooqui, U. R.; Hamid, N. A. Effect of graphene oxide (GO) on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane. Polymer2018, 142, 330–336.CrossRefGoogle Scholar
  37. 37.
    Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater.2016, 28, 4338–4372.CrossRefGoogle Scholar
  38. 38.
    Li, L.; Bai, Y.; Li, L.; Wang, S.; Zhang, T. A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 2017, 29, 1702517.CrossRefGoogle Scholar
  39. 39.
    Yang, S.; Lu, N. Gauge factor and stretchability of silicon-on-polymer strain gauges. Sensors2013, 13, 8577–8594.CrossRefGoogle Scholar
  40. 40.
    Liu, T.; Liu, M.; Dou, S.; Sun, J.; Cong, Z.; Jiang, C.; Du, C.; Pu, X.; Hu, W.; Wang, Z. L. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano2018, 12, 2818–2826.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education and Beijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
  3. 3.School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingChina

Personalised recommendations