Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive

  • Zhen-Ye Li
  • Wen-Kai Zhong
  • Lei YingEmail author
  • Ning Li
  • Feng Liu
  • Fei HuangEmail author
  • Yong Cao


Advances in organic photovoltaic technologies have been geared toward industrial high-throughput printing manufacturing, which requires insensitivity of photovoltaic performance regarding to the light-harvesting layer thickness. However, the thickness of light-harvesting layer for all polymer solar cells (all-PSCs) is often limited to about 100 nm due to the dramatically decreased fill factor upon increasing film thickness, which hampers the light harvesting capability to increase the power conversion efficiency, and is unfavorable for fabricating large-area devices. Here we demonstrate that by tuning the bulk heterojunction morphology using a non-halogenated solvent, cyclopentyl methyl ether, in the presence of a green solvent additive of dibenzyl ether, the power conversion efficiency of all-PSCs with photoactive layer thicknesses of over 500 nm reached an impressively high value of 9%. The generic applicability of this green solvent additive to boost the power conversion efficiency of thick-film devices is also validated in various bulk heterojunction active layer systems, thus representing a promising approach for the fabrication of all-PSCs toward industrial production, as well as further commercialization.


Thick-film all-polymer solar cell Green solvent additive Dibenzyl ether 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21822505, 91633301, 51673069, and 21520102006), Program for Science and Technology Development of Dongguan (No. 2019622163009), and the Dongguan Innovative Research Team Program (No. 2018607201002). Portions of this research used the resources of beamline 7.3.3 and at Advanced Light Source, Materials Science Division, The Molecular Foundry, Lawrence Berkeley National Laboratory, which was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Supplementary material

10118_2020_2356_MOESM1_ESM.pdf (606 kb)
Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive


  1. 1.
    Ma, X.; Luo, M.; Gao, W.; Yuan, J.; An, Q.; Zhang, M.; Hu, Z.; Gao, J.; Wang, J.; Zou, Y.; Yang, C.; Zhang, F. Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. J. Mater. Chem. A2019, 7, 7843–7851.CrossRefGoogle Scholar
  2. 2.
    Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H. L.; Peng, X.; Cao, Y.; Chen, Y. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics2016, 11, 85–90.CrossRefGoogle Scholar
  3. 3.
    Zhao, Y.; Zou, W.; Li, H.; Lu, K.; Yan, W.; Wei, Z. X. Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chinese J. Polym. Sci.2017, 35, 261–268.CrossRefGoogle Scholar
  4. 4.
    Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; Li, Y. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun.2016, 7, 13651.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Li Z.; Zhong W.; Ying L.; Liu F.; Li N.; Huang F.; Cao Y. Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy2019, 64, 103931.CrossRefGoogle Scholar
  6. 6.
    Jin, Y.; Chen, Z.; Xiao, M.; Peng, J.; Fan, B.; Ying, L.; Zhang, G.; Jiang, X. F.; Yin, Q.; Liang, Z.; Huang, F.; Cao, Y. Thick film polymer solar cells based on naphtho[1,2-c:5,6-c]bis[1,2,5] thiadiazole conjugated polymers with efficiency over 11%. Adv. Energy Mater.2017, 6, 1700944.CrossRefGoogle Scholar
  7. 7.
    Yao, H.; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu, H.; Chen, S.; Liu, T.; Yuk, J.; Lai, L.; Zou, Y.; Ade, H.; Yan, H. Efficient all-polymer solar cells based on an new polymer acceptor achieving 10.3% power conversion efficiency. ACS Energy Lett.2019, 4, 417–422.CrossRefGoogle Scholar
  8. 8.
    Zhao, W.; Zhang, Y.; Zhang, S.; Li, S.; He, C.; Hou, J. Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. J. Mater. Chem. C2019, 7, 3206–3211.CrossRefGoogle Scholar
  9. 9.
    Yang, J.; Yin, Y.; Chen, F.; Zhang, Y.; Xiao, B.; Zhao, L.; Zhou, E. Comparison of three n-type copolymers based on benzodithiophene and naphthalene diimide/perylene diimide/fused perylene diimides for all-polymer solar cells application. ACS Appl. Mater. Interfaces2018, 10, 23263–23269.PubMedCrossRefGoogle Scholar
  10. 10.
    Guo, Y. K.; Li, Y. K.; Han, H.; Yan, H.; Zhao, D. All-polymer solar cells with perylenediimide polymer acceptors. Chinese J. Polym. Sci.2017, 35, 293–301.CrossRefGoogle Scholar
  11. 11.
    Chen, H.; Guo, Y.; Chao, P.; Liu, L.; Chen, W.; Zhao, D.; He, F. A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells. Sci. China Chem.2019, 62, 238–244.CrossRefGoogle Scholar
  12. 12.
    Yang, F.; Li, C.; Feng, G.; Jiang, X.; Zhang, A.; Li, W. Bisperylene bisimide based conjugated polymer as electron acceptor for polymer-polymer solar cells. Chinese J. Polym. Sci.2017, 35, 239–248.CrossRefGoogle Scholar
  13. 13.
    Liu, J.; Wang, L. X. Polymer electron acceptors containing boronnitrogen coordination bond (B <- N) for all-polymer solar cells. Acta Polymerica Sinica (in Chinese) 2017, 1856–1869.Google Scholar
  14. 14.
    Zhou, E.; Cong, J.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto K. All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew. Chem. Int. Ed.2011, 50, 2799–2803.CrossRefGoogle Scholar
  15. 15.
    Zhou, E.; Cong, J.; Hashimoto K.; Tajima, K. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Adv. Mater.2013, 25, 6991–6996.PubMedCrossRefGoogle Scholar
  16. 16.
    Yang, J.; Chen, F.; Xiao, B.; Sun, S.; Sun, X.; Tajima, K.; Tang, A.; Zhou, E. Modulating the symmetry of benzodithiophene by molecular tailoring for the application in naphthalene diimide-based n-type photovoltaic polymers. Solar RRL2018, 2, 1700230.CrossRefGoogle Scholar
  17. 17.
    Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater.2016, 28, 1884.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhang, Z.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed.2017, 129, 13688–13692.CrossRefGoogle Scholar
  19. 19.
    Liu, S.; Kan, Z.; Thomas, S.; Cruciani, F.; Brédas, J. L.; Beaujuge, P. M. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene polymer acceptors for efficient all-polymer bulk heterojunction solar cells. Angew. Chem. Int. Ed.2016, 55, 12996–13000.CrossRefGoogle Scholar
  20. 20.
    Dou, C.; Long, X.; Ding, Z.; Xie, Z.; Liu J.; Wang, L. An electron-deficient building block based on the B←N unit: an electron acceptor for all-polymer solar cells. Angew. Chem. Int. Ed.2016, 55, 1436–1440.CrossRefGoogle Scholar
  21. 21.
    Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; He, Y.; Zhao, D. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor. dv. Mater.2017, 29, 1700309.Google Scholar
  22. 22.
    Li, Z.; Fan, B.; He, B.; Ying, L.; Zhong, W.; Liu, F.; Huang, F.; Cao, Y. Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%. Sci. China Chem.2018, 61, 427–4CrossRefGoogle Scholar
  23. 23.
    Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci.2019, 12, 157–163.CrossRefGoogle Scholar
  24. 24.
    Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Acc. Chem. Res.2016, 49, 2424–2434.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang, S.; Liu, Y.; Yang, J.; Tao, Y.; Guo, Y.; Cao, X.; Zhang, Z.; Li, Y.; Huang, W. Orthogonal solubility in fully conjugated donor-acceptor block copolymers: compatibilizers for polymer/fullerene bulk-heterojunction solar cells. Chinese J. Polym. Sci.2017, 35, 207–218.CrossRefGoogle Scholar
  26. 26.
    Liu, X.; Zou, Y.; Wang, H. Q.; Wang, L.; Fang J.; Yang, C. High-performance all-polymer solar cells with a high fill factor and a broad tolerance to the donor/acceptor ratio. ACS Appl. Mater. Interfaces2018, 10, 38302–38309.PubMedCrossRefGoogle Scholar
  27. 27.
    Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R.; Liu, F.; Yip, H. L.; Li, N.; Ma, Y.; Brabec, C. J.; Huang, F.; Cao, Y. Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nat. Commun.2019, 10, 4100.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Meng, L.; Yi, Y. Q. Q.; Wan, X.; Zhang, Y.; Ke, X.; Kan, B.; Wang, Y.; Xia, R.; Yip, H. L.; Li, C.; Chen, Y. A tandem organic solar cell with PCE of 14.52% employing subcells with the same polymer donor and two absorption complementary acceptors. Adv. Mater.2019, 31, 1804723.CrossRefGoogle Scholar
  29. 29.
    Yin, A.; Zhang, D.; Cheung, S. H.; So, S. K.; Fu, Z.; Ying, L.; Huang, F.; Zhou, H.; Zhang, Y. On the understanding of energetic disorder, charge recombination and voltage losses in all-polymer solar cells. J. Mater. Chem. C2018, 6, 7855–7863.CrossRefGoogle Scholar
  30. 30.
    Chen, H. Electron-deficient core fused-ring based non-fullerene acceptor enables over 15% efficiency in single junction organic solar cells. Sci. China Chem.2019, 62, 403–404.CrossRefGoogle Scholar
  31. 31.
    Zhang, K.; Liu, X. Y.; Xu, B. W.; Cui, Y.; Sun, M. L.; Hou J. H. High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chinese J. Polym. Sci.2017, 35, 219–229.CrossRefGoogle Scholar
  32. 32.
    Zhao, R. Y.; Dou, C. D.; Liu, J.; Wang, L. X. An alternating polymer of two building blocks based on B←N unit: non-fullerene acceptor for organic photovoltaics. Chinese J. Polym. Sci.2017, 35, 198–206.CrossRefGoogle Scholar
  33. 33.
    Yuan, J.; Ma, W. High efficiency all-polymer solar cells realized by the synergistic effect between the polymer side-chain structure and solvent additive. J. Mater. Chem. A2015, 3, 7077–7085.CrossRefGoogle Scholar
  34. 34.
    Li, W.; Albrecht, S.; Yang, L.; Roland, S.; Tumbleston, J. R.; McAfee, T.; Yan, L.; Kelly, M. A.; Ade, H.; Neher, D.; You, W. Moblity-controlled performance of thick solar cells based on fluorinated copolymers. J. Am. Chem. Soc.2014, 136, 15566–15576.PubMedCrossRefGoogle Scholar
  35. 35.
    Jin, Y.; Chen, Z.; Dong, S.; Zheng, N.; Ying, L.; Jiang, X. F.; Liu, F.; Huang, F.; Cao, Y. A novel naphtho[1,2-c:5,6-c′]bis([1,2,5] thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv. Mater.201628 9811–98PubMedCrossRefGoogle Scholar
  36. 36.
    Li, W.; Hendriks, K. H.; Roelofs, W. S. C.; Kim, Y.; Wienk M. M.; Janssen, R. A. J. Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films. Adv. Mater.201325 3182–31PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Yan, H.; Tang, Y.; Sui, X.; Liu, Y.; Gao, B.; Liu, X.; Liu, S. F.; Hou, J.; Ma, W. Increasing quantum efficiency of polymer solar cells with efficient exciton splitting and long carrier lifetime by molecular doping at heterojunctions. ACS Energy Lett.2019, 4, 1356–1363.CrossRefGoogle Scholar
  38. 38.
    Fan, B.; Zhu, P.; Xin, J.; Li, N.; Ying, L.; Zhong, W.; Li, Z.; Ma, W.; Huang, F.; Cao, Y. High-performance thick-film all-polymer solar cells created va ternary blending of a novel wide-bandgap electron-donating copolymer. Adv. Energy Mater.2018, 8, 1703085.CrossRefGoogle Scholar
  39. 39.
    Yuan, J.; Xu, Y.; Shi, G.; Ling, X.; Ying, L.; Huang, F.; Lee, T. H.; Woo, H. Y.; Kim, J. Y.; Cao, Y.; Ma, W. Engineering the morphology via processing additives in multiple all-polymer solar cells for improved performance. J. Mater. Chem. A2018, 6, 10421–10432.CrossRefGoogle Scholar
  40. 40.
    Zheng, Y.; Goh, T.; Fan, P.; Shi, W.; Yu, J.; Taylor, A. D. Toward efficient thick active PTB7 photovoltaic layers using diphenyl ether as a solvent additive. ACS Appl. Mater. Interfaces2016, 8, 15724–15731.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Xua, X.; Lia, Z.; Wang, J.; Lin, B.; Ma, W.; Xia, Y.; Anderssone, M. R.; Janssen, E.; Wang, R. A. J. High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants. Nano Energy2018, 45, 368–379.CrossRefGoogle Scholar
  42. 42.
    Zhan, L.; Li, S.; Zhang, S.; Chen, X.; Lau, T. K.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. Enhanced charge transfer between fullerene and non-fullerene acceptors enables highly efficient ternary organic solar cells. ACS Appl. Mater. Interfaces2018, 10, 42444–42452.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Wang, Y.; Yan, Z.; Guo, H.; Uddin, M. A.; Ling, S.; Zhou, X.; Su, H.; Dai, J.; Woo, H. Y.; Guo, X. Effects of bithiophene imide fusion on the device performance of organic thin-film transistors and all-polymer solar cells. Angew. Chem. Int. Ed.2017, 56, 15304–15308.CrossRefGoogle Scholar
  44. 44.
    Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z. G.; Liu, F.; Zhang, M.; Russell, T. P.; Li, Y. 11.2% efficiency all-polymer solar cells with high open-circuit voltage. Sci. China Chem.2019, 62, 845–850.CrossRefGoogle Scholar
  45. 45.
    Dai, S. X.; Zhang, S. M.; Ling, Q. D.; Zhan, X. W. Rylene diimide and dithienocyano-vinylene copolymers for polymer solar cells. Chinese J. Polym. Sci.2017, 35, 230–238.CrossRefGoogle Scholar
  46. 46.
    Wang, M. H.; Xue, Z. Y.; Wang, Z. W.; Ning, W. H.; Zhong, Y.; Liu, Y. N.; Zhang, C. F.; Huettner, S.; Tao, Y. T. Slight structural disorder in bithiophene-based random terpolymers with improved power conversion efficiency for polymer solar cells. Chinese J. Polym. Sci.2018, 36, 1129–1138.CrossRefGoogle Scholar
  47. 47.
    Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Adv. Mater.2017, 29, 1703906.CrossRefGoogle Scholar
  48. 48.
    Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature2009, 457, 679.PubMedCrossRefGoogle Scholar
  49. 49.
    Wu, Z.; Sun, C.; Dong, S.; Jiang, X. F.; Wu, S.; Wu, H.; Yip, H. L.; Huang, F.; Cao, Y. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc.2016, 138, 2004–2013.PubMedCrossRefGoogle Scholar
  50. 50.
    Li, Z.; Xie, R.; Zhong, W.; Fan, B.; Ali, J.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y. High-performance green solvent processed ternary blended all-polymer solar cells enabled by complementary absorption and improved morphology. Sol. RRL2018, 2, 1800196.CrossRefGoogle Scholar
  51. 51.
    Zhang, L.; Ma, W. Morphology optimization in ternary organic solar cells. Chinese J. Polym. Sci.2017, 35, 184–197.CrossRefGoogle Scholar
  52. 52.
    Li, Z.; Ying, L.; Xie, R.; Zhu, P.; Li, N.; Zhong, W.; Huang, F.; Cao, Y. Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%. Nano Energy201851 434–441.CrossRefGoogle Scholar
  53. 53.
    Feng, K.; Yuan, J.; Bi, Z.; Ma, W.; Xu, X.; Zhang, G.; Peng, Q. Low-energy-loss polymer solar cells with 14.52% efficiency enabled by wide-band-gap copolymers. iScience2019, 12, 1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zheng, Z.; Wang, R.; Yao, H.; Xie, S.; Zhang, Y.; Hou, J.; Zhou, H.; Tang, Z. Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current. Nano Energy 2018, 50, 169–175.CrossRefGoogle Scholar
  55. 55.
    Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Qian, G.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci.2017, 35, 171–183.CrossRefGoogle Scholar
  56. 56.
    Keshtov, M. L.; Marochkin, D. V.; Fu, Y. Y.; Xie, Z. Y.; Geng, Y. H.; Kochurov V. S.; Khokhlov A. R. Thienopyrazine or dithiadiazatrindene containing low band gap conjugated polymers for polymer solar cells. Chinese J. Polym. Sci.2014, 32, 844–853.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouChina
  2. 2.South China Institute of Collaborative InnovationDongguanChina
  3. 3.Institute of Materials for Electronics and Energy Technology (i-MEET)FAU Erlangen-NürnbergErlangenGermany
  4. 4.Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations