Preparation of Polyaniline-coated Composite Aerogel of MnO2 and Reduced Graphene Oxide for High-performance Zinc-ion Battery
- 22 Downloads
Abstract
Aqueous zinc-ion batteries, especially Zn-MnO2 battery, have attracted intensive attention owing to their unique features of high capacity, environmental friendliness, and safety. However, the problem of Mn dissolution hinders the development of zinc-ion batteries with long-term usage and high-rate performance. In this work, a novel preparation method for the polyaniline (PANI)-coated composite aerogel of MnO2 and rGO (MnO2/rGO/PANI) electrode is reported. The obtained composite possesses high electrical conductivity, and also effectively suppresses the dissolution of Mn. The fabricated MnO2/rGO/PANI//Zn battery exhibits a high capacity of 241.1 mAh·g−1 at 0.1 A·g−1, and an excellent capacity retention of 82.7% after 600 charge/discharge cycles. In addition, the rapid diffusion coefficient of the MnO2/rGO/PANI electrode was further examined by galvanostatic intermittent titration technique. This work provides new insights into the development of high-performance Zn-MnO2 battery with a better understanding of its diffusion kinetics.
Keywords
MnO2 Polyaniline Composite aerogels Aqueous zinc-ion batteries Galvanostatic intermittent titration techniquesPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (Nos. 51602284 and 51702286), Natural Science Foundation of Zhejiang Province, China (Nos. LQ17B030002 and LR19E020003), and General Scientific Research Project of the Department of Education of Zhejiang Province, China (No. Y201839638).
Supplementary material
References
- 1.Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science2015, 350, 938–943.PubMedCrossRefGoogle Scholar
- 2.Dong, X.; Chen, L.; Liu, J.; Haller, S.; Wang, Y.; Xia, Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv.2016, 2, 1501038.CrossRefGoogle Scholar
- 3.Liu, W. X.; Yin, R. L.; Xu, X. L.; Zhang, L.; Shi, W. H.; Cao, X. H. Structural engineering of low-dimensional metal-organic frameworks: Synthesis, properties, and applications. Adv. Sci.2019, 1802373.PubMedPubMedCentralCrossRefGoogle Scholar
- 4.Shi, W. H.; Mao, J.; Xu, X. L.; Liu, W. X.; Zhang, L.; Cao, X. H.; Lu, X. H. An ultra-dense NiS2/reduced graphene oxide composite cathode for high-volumetric/gravimetric energy density nickel-zinc batteries. J. Mater. Chem. A2019, 7, 15654–15661.CrossRefGoogle Scholar
- 5.Zhang, L.; Liu, W. X.; Shi, W. H.; Xu, X. L.; Mao, J.; Li, P.; Ye, C. Z.; Yin, R. L.; Ye, S. F.; Liu, X. Y.; Cao, X. H.; Gao, C. Boosting lithium storage properties of MOF derivatives through a wet-spinning assembled fiber strategy. Chem. Eur. J.2018, 24, 13792–13799.PubMedCrossRefGoogle Scholar
- 6.Mo, F.; Liang, G.; Meng, Q.; Liu, Z.; Li, H.; Fan, J.; Zhi, C. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci.2019, 12, 706–715.CrossRefGoogle Scholar
- 7.Song, M.; Tan, H.; Chao, D.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater.2018, 28, 1802564.CrossRefGoogle Scholar
- 8.Zhang, H.; Wang, J.; Liu, Q.; He, W.; Lai, Z.; Zhang, X.; Yu, M.; Tong, Y.; Lu, X. Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater.2019, 21, 154–161.CrossRefGoogle Scholar
- 9.Chen, C.; Gan, Z.; Xu, C.; Lu, L.; Liu, Y.; Gao, Y. Electrosynthesis of poly(aniline-co-azure B) for aqueous rechargeable zinc-conducting polymer batteries. Electrochim. Acta2017, 252, 226–234.CrossRefGoogle Scholar
- 10.Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater.2017, 29, 1700274.CrossRefGoogle Scholar
- 11.Liu, P.; Lv, R.; He, Y.; Na, B.; Wang, B.; Liu, H. An integrated, flexible aqueous Zn-ion battery with high energy and power densities. J. Power Sources2019, 410–411, 137–142.CrossRefGoogle Scholar
- 12.Shi, H. Y.; Ye, Y. J.; Liu, K.; Song, Y.; Sun, X. A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed.2018, 57, 16359–16363.CrossRefGoogle Scholar
- 13.Selvakumaran, D.; Pan, A.; Liang, S.; Cao, G. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A2019, 7, 18209–18236.CrossRefGoogle Scholar
- 14.Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater.2018, 17, 543–549.PubMedCrossRefGoogle Scholar
- 15.Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun.2018, 9, 2906.PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Wu, X.; Li, Y.; Xiang, Y.; Liu, Z.; He, Z.; Wu, X.; Li, Y.; Xiong, L.; Li, C.; Chen, J. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte. J. Power Sources2016, 336, 35–39.CrossRefGoogle Scholar
- 17.Zhou, J.; Shan, L.; Wu, Z.; Guo, X.; Fang, G.; Liang, S. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun.2018, 54, 4457–4460.CrossRefGoogle Scholar
- 18.Huang, Y.; He, W.; Zhang, P.; Lu, X. Nitrogen-doped MnO2 nanorods as cathodes for high-energy Zn-MnO2 batteries. Funct. Mater. Lett.2018, 11, 1840006.CrossRefGoogle Scholar
- 19.Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small2018, 14, 1703850.CrossRefGoogle Scholar
- 20.Yadav, G. G.; Gallaway, J. W.; Turney, D. E.; Nyce, M.; Huang, J.; Wei, X.; Banerjee, S. Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun.2017, 8, 14424.PubMedPubMedCentralCrossRefGoogle Scholar
- 21.Vasiliev, I.; Magar, B. A.; Duay, J.; Lambert, T. N.; Chalamala, B. Ab initio studies of hydrogen ion insertion into β-, R-, and γ-MnO2 polymorphs and the implications for shallow-cycled rechargeable Zn/MnO2 batteries. J. Electrochem. Soc. 2018, 165, 3517–3524.CrossRefGoogle Scholar
- 22.Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater.2015, 27, 3609–3620.CrossRefGoogle Scholar
- 23.Lu, K.; Song, B.; Zhang, Y.; Ma, H.; Zhang, J. Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc ion batteries. J. Mater. Chem. A2017, 2, 23628–23633.CrossRefGoogle Scholar
- 24.Kim, S. H.; Oh, S. M. Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells. J. Power Sources1998, 72, 150–158.CrossRefGoogle Scholar
- 25.Fang, G.; Zhu, C.; Chen, M.; Zhou, J.; Tang, B.; Cao, X.; Zheng, X.; Pan, A.; Liang, S. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater.2019, 29, 1808375.CrossRefGoogle Scholar
- 26.Alfaruqi, M. H.; Islam, S.; Mathew, V.; Song, J.; Kim, S.; Tung, D. P.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z.; Kim, J. Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. Appl. Surf. Sci.2017, 404, 435–442.CrossRefGoogle Scholar
- 27.Nolis, G. M.; Adil, A.; Yoo, H. D.; Hu, L.; Bayliss, R. D.; Lapidus, S. H.; Berkland, L.; Phillips, P. J.; Freeland, J. W.; Kim, C.; Klie, R. F.; Cabana, J. Electrochemical reduction of a spinel-type manganese oxide cathode in aqueous electrolytes with Ca2+ or Zn2+. J. Phys. Chem. C2018, 122, 4182–4188.CrossRefGoogle Scholar
- 28.Hu, P.; Yan, M.; Wang, X.; Han, C.; He, L.; Wei, X.; Niu, C.; Zhao, K.; Tian, X.; Wei, Q.; Li, Z.; Mai, L. Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices. Nano Lett.2016, 16, 1523–1529.PubMedCrossRefGoogle Scholar
- 29.Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy2016, 1, 16039.CrossRefGoogle Scholar
- 30.Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc.2016, 138, 12894–12901.PubMedCrossRefGoogle Scholar
- 31.Wang, J.; Dong, L.; Xu, C.; Ren, D.; Ma, X.; Kang, F. Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces2018, 10, 10851–10859.PubMedCrossRefGoogle Scholar
- 32.Yu, G.; Hu, L.; Liu, N.; Wang, H.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett.2011, 11, 4438–4442.PubMedCrossRefGoogle Scholar
- 33.Islam, S.; Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J.; Pham, D. T.; Putro, D. Y.; Sun, Y.; Kim, J. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A2017, 5, 23299–23309.CrossRefGoogle Scholar
- 34.Yu, P.; Zhao, X.; Huang, Z.; Li, Y.; Zhang, Q. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. J. Mater. Chem. A2014, 2, 14413–14420.CrossRefGoogle Scholar
- 35.Lai, W.; Wang, Y.; Lei, Z.; Wang, R.; Lin, Z.; Wong, C.; Kang, F.; Yang, C. High performance, environmentally benign and integratable Zn//MnO2 microbatteries. J. Mater. Chem. A2018, 6, 3933–3940.CrossRefGoogle Scholar
- 36.Li, B.; Chai, J.; Ge, X.; An, T.; Lim, P.; Liu, Z.; Zong, Y. Sheet-on-sheet hierarchical nanostructured C@MnO2 for Zn-air and Zn-MnO2 batteries. ChemNanoMat2017, 3, 401–405.CrossRefGoogle Scholar
- 37.Zhang, Z.; Xiao, F.; Qian, L.; Xiao, J.; Wang, S.; Liu, Y. Facile synthesis of 3D MnO2-graphene and carbon nanotube-graphene composite networks for high-performance, flexible, all-solidstate asymmetric supercapacitors. Adv. Energy Mater.2014, 4, 1400064.CrossRefGoogle Scholar
- 38.Zhang, J.; Han, J.; Wang, M.; Guo, R. Fe3O4/PANI/MnO2 core-shell hybrids as advanced adsorbents for heavy metal ions. J. Mater. Chem. A2017, 5, 4058–4066.CrossRefGoogle Scholar
- 39.Fu, Y.; Wei, Q.; Zhang, G.; Wang, X.; Zhang, J.; Hu, Y.; Wang, D.; Zuin, L.; Zhou, T.; Wu, Y.; Sun, S. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater.2018, 8, 1801445.CrossRefGoogle Scholar
- 40.Han, J.; Wang, K.; Liu, W.; Li, C.; Sun, X.; Zhang, X.; An, Y.; Yi, S.; Ma, Y. Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale2018, 10, 13083–13091.PubMedCrossRefGoogle Scholar
- 41.Hesham, R. T.; Kengne, B. A.; McIlroy, D.; Tai, N.; Deukhyoun, H.; Qiang, You.; Eric, A. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders. J. Appl. Phys.2015, 118, 175501.CrossRefGoogle Scholar
- 42.Zang, X.; Li, X.; Zhu, M.; Li, X.; Zhen, Z.; He, Y.; Wang, K.; Wei, J.; Kang, F.; Zhu, H. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale2015, 7, 7318–7322.PubMedCrossRefGoogle Scholar
- 43.Zhao, T.; Zhang, G.; Zhou, F.; Zhang, S.; Deng, C. Toward tailorable Zn-ion textile batteries with high energy density and ultrafast capability: building high-performance textile electrode in 3D hierarchical branched design. Small2018, 14, 1802320.CrossRefGoogle Scholar
- 44.Zhao, S.; Han, B.; Zhang, D.; Huang, Q.; Xiao, L.; Chen, L.; Ivey, D. G.; Deng, Y.; Wei, W. Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A2018, 6, 5733–5739.CrossRefGoogle Scholar
- 45.Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; Wang, C. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc.2017, 139, 9775–9778.PubMedCrossRefGoogle Scholar
- 46.Wang, K.; Zhang, X.; Han, J.; Zhang, X.; Sun, X.; Li, C.; Liu, W.; Li, Q.; Ma, Y. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces2018, 10, 24573–24582.PubMedCrossRefGoogle Scholar
- 47.Ali, G.; Islam, M.; Kim, J. Y.; Jung, H. G.; Chung, K. Y. Kinetic and electrochemical reaction mechanism investigations of rodlike CoMoO4 anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces2019, 11, 3843–3851.PubMedCrossRefGoogle Scholar
- 48.Guo, S.; Yu, H.; Jian, Z.; Liu, P.; Zhu, Y.; Guo, X.; Chen, M.; Ishida, M.; Zhou, H. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. ChemSusChem2014, 7, 2115–2121.PubMedCrossRefGoogle Scholar