Preparation of Polyaniline-coated Composite Aerogel of MnO2 and Reduced Graphene Oxide for High-performance Zinc-ion Battery

  • Jing Mao
  • Fang-Fang Wu
  • Wen-Hui Shi
  • Wen-Xian Liu
  • Xi-Lian Xu
  • Gang-Feng Cai
  • Yi-Wen Li
  • Xie-Hong CaoEmail author


Aqueous zinc-ion batteries, especially Zn-MnO2 battery, have attracted intensive attention owing to their unique features of high capacity, environmental friendliness, and safety. However, the problem of Mn dissolution hinders the development of zinc-ion batteries with long-term usage and high-rate performance. In this work, a novel preparation method for the polyaniline (PANI)-coated composite aerogel of MnO2 and rGO (MnO2/rGO/PANI) electrode is reported. The obtained composite possesses high electrical conductivity, and also effectively suppresses the dissolution of Mn. The fabricated MnO2/rGO/PANI//Zn battery exhibits a high capacity of 241.1 mAh·g−1 at 0.1 A·g−1, and an excellent capacity retention of 82.7% after 600 charge/discharge cycles. In addition, the rapid diffusion coefficient of the MnO2/rGO/PANI electrode was further examined by galvanostatic intermittent titration technique. This work provides new insights into the development of high-performance Zn-MnO2 battery with a better understanding of its diffusion kinetics.


MnO2 Polyaniline Composite aerogels Aqueous zinc-ion batteries Galvanostatic intermittent titration techniques 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51602284 and 51702286), Natural Science Foundation of Zhejiang Province, China (Nos. LQ17B030002 and LR19E020003), and General Scientific Research Project of the Department of Education of Zhejiang Province, China (No. Y201839638).

Supplementary material

10118_2020_2353_MOESM1_ESM.pdf (2.9 mb)
Preparation of Polyaniline-coated Composite Aerogel of MnO2 and Reduced Graphene Oxide for High-performance Zinc-ion Battery


  1. 1.
    Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science2015, 350, 938–943.PubMedCrossRefGoogle Scholar
  2. 2.
    Dong, X.; Chen, L.; Liu, J.; Haller, S.; Wang, Y.; Xia, Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv.2016, 2, 1501038.CrossRefGoogle Scholar
  3. 3.
    Liu, W. X.; Yin, R. L.; Xu, X. L.; Zhang, L.; Shi, W. H.; Cao, X. H. Structural engineering of low-dimensional metal-organic frameworks: Synthesis, properties, and applications. Adv. Sci.2019, 1802373.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Shi, W. H.; Mao, J.; Xu, X. L.; Liu, W. X.; Zhang, L.; Cao, X. H.; Lu, X. H. An ultra-dense NiS2/reduced graphene oxide composite cathode for high-volumetric/gravimetric energy density nickel-zinc batteries. J. Mater. Chem. A2019, 7, 15654–15661.CrossRefGoogle Scholar
  5. 5.
    Zhang, L.; Liu, W. X.; Shi, W. H.; Xu, X. L.; Mao, J.; Li, P.; Ye, C. Z.; Yin, R. L.; Ye, S. F.; Liu, X. Y.; Cao, X. H.; Gao, C. Boosting lithium storage properties of MOF derivatives through a wet-spinning assembled fiber strategy. Chem. Eur. J.2018, 24, 13792–13799.PubMedCrossRefGoogle Scholar
  6. 6.
    Mo, F.; Liang, G.; Meng, Q.; Liu, Z.; Li, H.; Fan, J.; Zhi, C. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci.2019, 12, 706–715.CrossRefGoogle Scholar
  7. 7.
    Song, M.; Tan, H.; Chao, D.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater.2018, 28, 1802564.CrossRefGoogle Scholar
  8. 8.
    Zhang, H.; Wang, J.; Liu, Q.; He, W.; Lai, Z.; Zhang, X.; Yu, M.; Tong, Y.; Lu, X. Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater.2019, 21, 154–161.CrossRefGoogle Scholar
  9. 9.
    Chen, C.; Gan, Z.; Xu, C.; Lu, L.; Liu, Y.; Gao, Y. Electrosynthesis of poly(aniline-co-azure B) for aqueous rechargeable zinc-conducting polymer batteries. Electrochim. Acta2017, 252, 226–234.CrossRefGoogle Scholar
  10. 10.
    Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater.2017, 29, 1700274.CrossRefGoogle Scholar
  11. 11.
    Liu, P.; Lv, R.; He, Y.; Na, B.; Wang, B.; Liu, H. An integrated, flexible aqueous Zn-ion battery with high energy and power densities. J. Power Sources2019, 410–411, 137–142.CrossRefGoogle Scholar
  12. 12.
    Shi, H. Y.; Ye, Y. J.; Liu, K.; Song, Y.; Sun, X. A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed.2018, 57, 16359–16363.CrossRefGoogle Scholar
  13. 13.
    Selvakumaran, D.; Pan, A.; Liang, S.; Cao, G. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A2019, 7, 18209–18236.CrossRefGoogle Scholar
  14. 14.
    Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater.2018, 17, 543–549.PubMedCrossRefGoogle Scholar
  15. 15.
    Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun.2018, 9, 2906.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wu, X.; Li, Y.; Xiang, Y.; Liu, Z.; He, Z.; Wu, X.; Li, Y.; Xiong, L.; Li, C.; Chen, J. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte. J. Power Sources2016, 336, 35–39.CrossRefGoogle Scholar
  17. 17.
    Zhou, J.; Shan, L.; Wu, Z.; Guo, X.; Fang, G.; Liang, S. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun.2018, 54, 4457–4460.CrossRefGoogle Scholar
  18. 18.
    Huang, Y.; He, W.; Zhang, P.; Lu, X. Nitrogen-doped MnO2 nanorods as cathodes for high-energy Zn-MnO2 batteries. Funct. Mater. Lett.2018, 11, 1840006.CrossRefGoogle Scholar
  19. 19.
    Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small2018, 14, 1703850.CrossRefGoogle Scholar
  20. 20.
    Yadav, G. G.; Gallaway, J. W.; Turney, D. E.; Nyce, M.; Huang, J.; Wei, X.; Banerjee, S. Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun.2017, 8, 14424.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Vasiliev, I.; Magar, B. A.; Duay, J.; Lambert, T. N.; Chalamala, B. Ab initio studies of hydrogen ion insertion into β-, R-, and γ-MnO2 polymorphs and the implications for shallow-cycled rechargeable Zn/MnO2 batteries. J. Electrochem. Soc. 2018, 165, 3517–3524.CrossRefGoogle Scholar
  22. 22.
    Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater.2015, 27, 3609–3620.CrossRefGoogle Scholar
  23. 23.
    Lu, K.; Song, B.; Zhang, Y.; Ma, H.; Zhang, J. Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc ion batteries. J. Mater. Chem. A2017, 2, 23628–23633.CrossRefGoogle Scholar
  24. 24.
    Kim, S. H.; Oh, S. M. Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells. J. Power Sources1998, 72, 150–158.CrossRefGoogle Scholar
  25. 25.
    Fang, G.; Zhu, C.; Chen, M.; Zhou, J.; Tang, B.; Cao, X.; Zheng, X.; Pan, A.; Liang, S. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater.2019, 29, 1808375.CrossRefGoogle Scholar
  26. 26.
    Alfaruqi, M. H.; Islam, S.; Mathew, V.; Song, J.; Kim, S.; Tung, D. P.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z.; Kim, J. Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. Appl. Surf. Sci.2017, 404, 435–442.CrossRefGoogle Scholar
  27. 27.
    Nolis, G. M.; Adil, A.; Yoo, H. D.; Hu, L.; Bayliss, R. D.; Lapidus, S. H.; Berkland, L.; Phillips, P. J.; Freeland, J. W.; Kim, C.; Klie, R. F.; Cabana, J. Electrochemical reduction of a spinel-type manganese oxide cathode in aqueous electrolytes with Ca2+ or Zn2+. J. Phys. Chem. C2018, 122, 4182–4188.CrossRefGoogle Scholar
  28. 28.
    Hu, P.; Yan, M.; Wang, X.; Han, C.; He, L.; Wei, X.; Niu, C.; Zhao, K.; Tian, X.; Wei, Q.; Li, Z.; Mai, L. Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices. Nano Lett.2016, 16, 1523–1529.PubMedCrossRefGoogle Scholar
  29. 29.
    Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy2016, 1, 16039.CrossRefGoogle Scholar
  30. 30.
    Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc.2016, 138, 12894–12901.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, J.; Dong, L.; Xu, C.; Ren, D.; Ma, X.; Kang, F. Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces2018, 10, 10851–10859.PubMedCrossRefGoogle Scholar
  32. 32.
    Yu, G.; Hu, L.; Liu, N.; Wang, H.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett.2011, 11, 4438–4442.PubMedCrossRefGoogle Scholar
  33. 33.
    Islam, S.; Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J.; Pham, D. T.; Putro, D. Y.; Sun, Y.; Kim, J. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A2017, 5, 23299–23309.CrossRefGoogle Scholar
  34. 34.
    Yu, P.; Zhao, X.; Huang, Z.; Li, Y.; Zhang, Q. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. J. Mater. Chem. A2014, 2, 14413–14420.CrossRefGoogle Scholar
  35. 35.
    Lai, W.; Wang, Y.; Lei, Z.; Wang, R.; Lin, Z.; Wong, C.; Kang, F.; Yang, C. High performance, environmentally benign and integratable Zn//MnO2 microbatteries. J. Mater. Chem. A2018, 6, 3933–3940.CrossRefGoogle Scholar
  36. 36.
    Li, B.; Chai, J.; Ge, X.; An, T.; Lim, P.; Liu, Z.; Zong, Y. Sheet-on-sheet hierarchical nanostructured C@MnO2 for Zn-air and Zn-MnO2 batteries. ChemNanoMat2017, 3, 401–405.CrossRefGoogle Scholar
  37. 37.
    Zhang, Z.; Xiao, F.; Qian, L.; Xiao, J.; Wang, S.; Liu, Y. Facile synthesis of 3D MnO2-graphene and carbon nanotube-graphene composite networks for high-performance, flexible, all-solidstate asymmetric supercapacitors. Adv. Energy Mater.2014, 4, 1400064.CrossRefGoogle Scholar
  38. 38.
    Zhang, J.; Han, J.; Wang, M.; Guo, R. Fe3O4/PANI/MnO2 core-shell hybrids as advanced adsorbents for heavy metal ions. J. Mater. Chem. A2017, 5, 4058–4066.CrossRefGoogle Scholar
  39. 39.
    Fu, Y.; Wei, Q.; Zhang, G.; Wang, X.; Zhang, J.; Hu, Y.; Wang, D.; Zuin, L.; Zhou, T.; Wu, Y.; Sun, S. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater.2018, 8, 1801445.CrossRefGoogle Scholar
  40. 40.
    Han, J.; Wang, K.; Liu, W.; Li, C.; Sun, X.; Zhang, X.; An, Y.; Yi, S.; Ma, Y. Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale2018, 10, 13083–13091.PubMedCrossRefGoogle Scholar
  41. 41.
    Hesham, R. T.; Kengne, B. A.; McIlroy, D.; Tai, N.; Deukhyoun, H.; Qiang, You.; Eric, A. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders. J. Appl. Phys.2015, 118, 175501.CrossRefGoogle Scholar
  42. 42.
    Zang, X.; Li, X.; Zhu, M.; Li, X.; Zhen, Z.; He, Y.; Wang, K.; Wei, J.; Kang, F.; Zhu, H. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale2015, 7, 7318–7322.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhao, T.; Zhang, G.; Zhou, F.; Zhang, S.; Deng, C. Toward tailorable Zn-ion textile batteries with high energy density and ultrafast capability: building high-performance textile electrode in 3D hierarchical branched design. Small2018, 14, 1802320.CrossRefGoogle Scholar
  44. 44.
    Zhao, S.; Han, B.; Zhang, D.; Huang, Q.; Xiao, L.; Chen, L.; Ivey, D. G.; Deng, Y.; Wei, W. Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A2018, 6, 5733–5739.CrossRefGoogle Scholar
  45. 45.
    Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; Wang, C. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc.2017, 139, 9775–9778.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang, K.; Zhang, X.; Han, J.; Zhang, X.; Sun, X.; Li, C.; Liu, W.; Li, Q.; Ma, Y. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces2018, 10, 24573–24582.PubMedCrossRefGoogle Scholar
  47. 47.
    Ali, G.; Islam, M.; Kim, J. Y.; Jung, H. G.; Chung, K. Y. Kinetic and electrochemical reaction mechanism investigations of rodlike CoMoO4 anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces2019, 11, 3843–3851.PubMedCrossRefGoogle Scholar
  48. 48.
    Guo, S.; Yu, H.; Jian, Z.; Liu, P.; Zhu, Y.; Guo, X.; Chen, M.; Ishida, M.; Zhou, H. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. ChemSusChem2014, 7, 2115–2121.PubMedCrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jing Mao
    • 1
  • Fang-Fang Wu
    • 1
  • Wen-Hui Shi
    • 2
  • Wen-Xian Liu
    • 1
  • Xi-Lian Xu
    • 1
  • Gang-Feng Cai
    • 1
  • Yi-Wen Li
    • 1
  • Xie-Hong Cao
    • 1
    Email author
  1. 1.College of Materials Science and EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.Center for Membrane Separation and Water Science & Technology, Ocean CollegeZhejiang University of TechnologyHangzhouChina

Personalised recommendations