Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Probing Intermittent Motion of Polymer Chains in Weakly Attractive Nanocomposites

  • 21 Accesses

Abstract

In this study, we investigate the motion of polymer segments in polymer/nanoparticle composites by varying nanoparticle (NP) volume fractions. By studying the probability distribution of segment displacement, segment trajectory, and the square displacement of segment, we find the intermittent motion of segments, accompanied with the coexistence of slow and fast segments in polymer nanocomposites (PNCs). The displacement distribution of segments exhibits an exponential tail, rather than a Gaussian form. The intermittent dynamics of chain segments is comprised of a long-range jump motion and a short-range localized motion, which is mediated by the weakly attractive interaction between NP and chain segment and the strong confinement induced by NPs. Meanwhile, the intermittent motion of chain segments can be described by the adsorption-desorption transition at low particle loading and confinement effect at high particle loading. These findings may provide important information for understanding the anomalous motion of polymer chains in the presence of NPs.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Kumar, S. K.; Benicewicz, B. C.; Vaia, R. A.; Winey, K. I. 50th Anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules2017, 50, 714–731.

  2. 2

    Srivastava, S.; Schaefer, J. L.; Yang, Z.; Tu, Z.; Archer, L. A. 25th anniversary article: Polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv. Mater. 2014, 26, 201–234.

  3. 3

    Renna, L. A.; Boyle, C. J.; Gehan, T. S.; Venkataraman, D. Polymer nanoparticle assemblies: a versatile route to functional mesostructures. Macromolecules2015, 48, 6353–6368.

  4. 4

    Wang, M.; Duan, X.; Xu, Y.; Duan, X. Functional three-dimensional graphene/polymer composites. ACS Nano2016, 10, 7231–7247.

  5. 5

    Desai, T.; Keblinski, P.; Kumar, S. K. Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys.2005, 122, 134910.

  6. 6

    Smith, G. D.; Bedrov, D.; Li, L.; Byutner, O. A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites. J. Chem. Phys.2002, 117, 9478–9489.

  7. 7

    Liu, J.; Wu, Y.; Shen, J.; Gao, Y.; Zhang, L.; Cao, D. Polymernanoparticle interfacial behavior revisited: a molecular dynamics study. Phys. Chem. Chem. Phys.2011, 13, 13058–13069.

  8. 8

    Liu, J.; Wu, S.; Zhang, L.; Wang, W.; Cao, D. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement. Phys. Chem. Chem. Phys.2011, 13, 518–529.

  9. 9

    Smith, J. S.; Bedrov, D.; Smith, G. D. A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos. Sci. Technol.2003, 63, 1599–1605.

  10. 10

    Goswami, M.; Sumpter, B. G. Effect of polymer-filler interaction strengths on the thermodynamic and dynamic properties of polymer nanocomposites. J. Chem. Phys.2009, 130, 134910.

  11. 11

    Cheng, S.; Carroll, B.; Bocharova, V.; Carrillo, J. M.; Sumpter, B. G.; Sokolov, A. P. Focus: structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions. J. Chem. Phys.2017, 146, 203201.

  12. 12

    Cheng, S.; Holt, A. P.; Wang, H.; Fan, F.; Bocharova, V.; Martin, H.; Etampawala, T.; White, B. T.; Saito, T.; Kang, N. G.; Dadmun, M. D.; Mays, J. W.; Sokolov, A. P. Unexpected molecular weight effect in polymer nanocomposites. Phys. Rev. Lett.2016, 116, 038302.

  13. 13

    Voylov, D. N.; Holt, A. P.; Doughty, B.; Bocharova, V.; Meyer III, H. M.; Cheng, S.; Martin, H.; Dadmun, M.; Kisliuk, A.; Sokolov, A. P. Unraveling the molecular weight dependence of interfacial interactions in poly(2-vinylpyridine)/silica nanocomposites. ACS Macro Lett.2017, 6, 68–72.

  14. 14

    Karatrantos, A.; Clarke, N.; Composto, R. J.; Winey, K. I. Polymer conformations in polymer nanocomposites containing spherical nanoparticles. Soft Matter2015, 11, 382–8.

  15. 15

    Kim, S. Y.; Meyer, H. W.; Saalwachter, K.; Zukoski, C. F. Polymer dynamics in PEG-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution. Macromolecules2012, 45, 4225–4237.

  16. 16

    Kim, S. Y.; Zukoski, C. F. Molecular weight effects on particle and polymer microstructure in concentrated polymer solutions. Macromolecules2013, 46, 6634–6643.

  17. 17

    Hattemer, G. D.; Arya, G. Viscoelastic properties of polymergrafted nanoparticle composites from molecular dynamics simulations. Macromolecules2015, 48, 1240–1255.

  18. 18

    Einstein, A. Zur theorie der brownschen bewegung. Annalen der physik1906, 324, 371–381.

  19. 19

    Sentjabrskaja, T.; Zaccarelli, E.; de Michele, C.; Sciortino, F.; Tartaglia, P.; Voigtmann, T.; Egelhaaf, S. U.; Laurati, M. Anomalous dynamics of intruders in a crowded environment of mobile obstacles. Nat. Commun.2016, 7, 11133.

  20. 20

    Wang, B.; Kuo, J.; Bae, S. C.; Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater.2012, 11, 481–485.

  21. 21

    Guan, J.; Wang, B.; Granick, S. Even hard-sphere colloidal suspensions display fickian yet non-Gaussian diffusion. ACS Nano2014, 8, 3331–3336.

  22. 22

    Hwang, J.; Kim, J.; Sung, B. J. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm. Phys. Rev. E2016, 94, 022614.

  23. 23

    Skaug, M. J.; Mabry, J.; Schwartz, D. K. Intermittent molecular hopping at the solid-liquid interface. Phys. Rev. Lett. 2013, 110, 256101.

  24. 24

    Saltzman, E. J.; Schweizer, K. S. Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids. Phys. Rev. E2008, 77, 051504.

  25. 25

    Chaudhuri, P.; Hurtado, P. I.; Berthier, L.; Kob, W. Relaxation dynamics in a transient network fluid with competing gel and glass phases. J. Chem. Phys.2015, 142, 174503.

  26. 26

    Kwon, G.; Sung, B. J.; Yethiraj, A. Dynamics in crowded environments: is non-Gaussian Brownian diffusion normal? J. Phys. Chem. B2014, 118, 8128–8134.

  27. 27

    Xue, C.; Zheng, X.; Chen, K.; Tian, Y.; Hu, G. Probing non-Gaussianity in confined diffusion of nanoparticles. J. Phys. Chem. Lett.2016, 7, 514–519.

  28. 28

    Wang, B.; Anthony, S. M.; Bae, S. C.; Granick, S. Anomalous yet Brownian. Proc. Natl. Acad. Sci.2009, 106, 15160–15164.

  29. 29

    Volgin, I. V.; Larin, S. V.; Abad, E.; Lyulin, S. V. Molecular dynamics simulations of fullerene diffusion in polymer melts. Macromolecules2017, 50, 2207–2218.

  30. 30

    Desai, T. G.; Keblinski, P.; Kumar, S. K.; Granick, S. Modeling diffusion of adsorbed polymer with explicit solvent. Phys. Rev. Lett.2007, 98, 218301.

  31. 31

    Walder, R.; Nelson, N.; Schwartz, D. K. Single molecule observations of desorption-mediated diffusion at the solid-liquid interface. Phys. Rev. Lett.2011, 107, 156102.

  32. 32

    Mabry, J. N.; Schwartz, D. K. Tuning the flight length of molecules diffusing on a hydrophobic surface. J. Phys. Chem. Lett.2015, 6, 2065–9.

  33. 33

    Wang, D. P.; Chin, H. Y.; He, C. L.; Stoykovich, M. P.; Schwartz, D. K. Polymer surface transport is a combination of in-plane diffusion and desorption-mediated flights. ACS Macro Lett.2016, 5, 509–514.

  34. 34

    Chien, W.; Chen, Y. L. Abnormal polymer transport in crowded attractive micropost arrays. Soft Matter2016, 12, 7969–7976.

  35. 35

    Wang, D.; Hu, R.; Mabry, J. N.; Miao, B.; Wu, D. T.; Koynov, K.; Schwartz, D. K. Scaling of polymer dynamics at an oil-water interface in regimes dominated by viscous drag and desorption-mediated flights. J. Am. Chem. Soc.2015, 137, 12312–12320.

  36. 36

    Yu, C.; Guan, J.; Chen, K.; Bae, S. C.; Granick, S. Single-molecule observation of long jumps in polymer adsorption. ACS Nano2013, 7, 9735–9742.

  37. 37

    Bychuk, O. V.; O’Shaughnessy, B. Anomalous diffusion at liquid surfaces. Phys. Rev. Lett.1995, 74, 1795–1798.

  38. 38

    Schunack, M.; Linderoth, T. R.; Rosei, F.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F. Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett.2002, 88, 156102.

  39. 39

    Pryamitsyn, V.; Ganesan, V. Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules2006, 39, 844–856.

  40. 40

    Schneider, G. J.; Nusser, K.; Neueder, S.; Brodeck, M.; Willner, L.; Farago, B.; Holderer, O.; Briels, W. J.; Richter, D. Anomalous chain diffusion in unentangled model polymer nanocomposites. Soft Matter2013, 9, 4336–4348.

  41. 41

    Skaug, M. J.; Mabry, J. N.; Schwartz, D. K. Single-molecule tracking of polymer surface diffusion. J. Am. Chem. Soc.2014, 136, 1327–32.

  42. 42

    Dai, L. J.; Fu, C. L.; Zhu, Y. L.; Sun, Z. Y. Heterogeneous dynamics of unentangled chains in polymer nanocomposites. J. Chem. Phys. 2019, 150, 184903.

  43. 43

    Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086.

  44. 44

    Hardin, R.; Sloane, N.; Smith, W. Tables of spherical codes with icosahedral symmetry. Published electronically at https://doi.org/www.research.att.com 2000.

  45. 45

    Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem.2013, 34, 2197–2211.

  46. 46

    Li, Y.; Kroger, M.; Liu, W. K. Dynamic structure of unentangled polymer chains in the vicinity of non-attractive nanoparticles. Soft Matter2014, 10, 1723–37.

  47. 47

    Hansen, J. P.; McDonald, I. R. in Theory of simple liquids, Fourth Edition, Academic Press, Oxford, 2013, pp. 311–361.

  48. 48

    Colmenero, J.; Alvarez, F.; Arbe, A. Self-motion and the a relaxation in a simulated glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior. Phys. Rev. E2002, 65, 041804.

  49. 49

    van der Meer, B.; Qi, W.; Sprakel, J.; Filion, L.; Dijkstra, M. Dynamical heterogeneities and defects in two-dimensional soft colloidal crystals. Soft Matter2015, 11, 9385–9392.

  50. 50

    Kim, J.; Kim, C.; Sung, B. J. Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids. Phys. Rev. Lett.2013, 110, 047801.

  51. 51

    Zangi, R.; Rice, S. A. Cooperative dynamics in two dimensions. Phys. Rev. Lett.2004, 92, 035502.

  52. 52

    Chaudhuri, P.; Berthier, L.; Kob, W. Universal nature of particle displacements close to glass and jamming transitions. Phys. Rev. Lett.2007, 99, 060604.

  53. 53

    Dibble, C. J.; Kogan, M.; Solomon, M. J. Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity. Phys. Rev. E2006, 74, 041403.

  54. 54

    Hurtado, P. I.; Berthier, L.; Kob, W. Heterogeneous diffusion in a reversible gel. Phys. Rev. Lett.2007, 98, 135503.

  55. 55

    Miyagawa, H.; Hiwatari, Y.; Bernu, B.; Hansen, J. Molecular dynamics study of binary soft-sphere mixtures: jump motions of atoms in the glassy state. J. Chem. Phys.1988, 88, 3879–3886.

  56. 56

    Babayekhorasani, F.; Dunstan, D. E.; Krishnamoorti, R.; Conrad, J. C. Nanoparticle diffusion in crowded and confined media. Soft Matter2016, 12, 8407–8416.

  57. 57

    Kob, W.; Donati, C.; Plimpton, S. J.; Poole, P. H.; Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett.1997, 79, 2827–2830.

  58. 58

    Weeks, E. R.; Crocker, J. C.; Levitt, A. C.; Schofield, A.; Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science2000, 287, 627–631.

  59. 59

    Wu, S. Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer1985, 26, 1855–1863.

  60. 60

    Gam, S.; Meth, J. S.; Zane, S. G.; Chi, C. Z.; Wood, B. A.; Seitz, M. E.; Winey, K. I.; Clarke, N.; Composto, R. J. Macromolecular diffusion in a crowded polymer nanocomposite. Macromolecules2011, 44, 3494–3501.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21790344, 21833008, 21774129), the National Key R&D Program of China (No. 2018YFB0703701), the Jilin Provincial science and technology development program (No. 20190101021JH), and the Key Research Program of Frontier Sciences, CAS (No. QYZDY-SSWSLH027).

Author information

Correspondence to Zhao-Yan Sun.

Electronic Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Fu, C., Zhu, Y. et al. Probing Intermittent Motion of Polymer Chains in Weakly Attractive Nanocomposites. Chin J Polym Sci (2019). https://doi.org/10.1007/s10118-020-2352-7

Download citation

Keywords

  • Nanocomposites
  • Intermittent dynamics
  • The probability distribution of displacement
  • Confinement
  • Adsorption-desorption mechanism