Probing Intermittent Motion of Polymer Chains in Weakly Attractive Nanocomposites

  • Li-Jun Dai
  • Cui-Liu Fu
  • You-Liang Zhu
  • Zhan-Wei Li
  • Zhao-Yan SunEmail author


In this study, we investigate the motion of polymer segments in polymer/nanoparticle composites by varying nanoparticle (NP) volume fractions. By studying the probability distribution of segment displacement, segment trajectory, and the square displacement of segment, we find the intermittent motion of segments, accompanied with the coexistence of slow and fast segments in polymer nanocomposites (PNCs). The displacement distribution of segments exhibits an exponential tail, rather than a Gaussian form. The intermittent dynamics of chain segments is comprised of a long-range jump motion and a short-range localized motion, which is mediated by the weakly attractive interaction between NP and chain segment and the strong confinement induced by NPs. Meanwhile, the intermittent motion of chain segments can be described by the adsorption-desorption transition at low particle loading and confinement effect at high particle loading. These findings may provide important information for understanding the anomalous motion of polymer chains in the presence of NPs.


Nanocomposites Intermittent dynamics The probability distribution of displacement Confinement Adsorption-desorption mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21790344, 21833008, 21774129), the National Key R&D Program of China (No. 2018YFB0703701), the Jilin Provincial science and technology development program (No. 20190101021JH), and the Key Research Program of Frontier Sciences, CAS (No. QYZDY-SSWSLH027).

Supplementary material

10118_2020_2352_MOESM1_ESM.pdf (447 kb)
Probing Intermittent Motion of Polymer Chains in Weakly Attractive Nanocomposites


  1. 1.
    Kumar, S. K.; Benicewicz, B. C.; Vaia, R. A.; Winey, K. I. 50th Anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules2017, 50, 714–731.CrossRefGoogle Scholar
  2. 2.
    Srivastava, S.; Schaefer, J. L.; Yang, Z.; Tu, Z.; Archer, L. A. 25th anniversary article: Polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv. Mater. 2014, 26, 201–234.PubMedCrossRefGoogle Scholar
  3. 3.
    Renna, L. A.; Boyle, C. J.; Gehan, T. S.; Venkataraman, D. Polymer nanoparticle assemblies: a versatile route to functional mesostructures. Macromolecules2015, 48, 6353–6368.CrossRefGoogle Scholar
  4. 4.
    Wang, M.; Duan, X.; Xu, Y.; Duan, X. Functional three-dimensional graphene/polymer composites. ACS Nano2016, 10, 7231–7247.PubMedCrossRefGoogle Scholar
  5. 5.
    Desai, T.; Keblinski, P.; Kumar, S. K. Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys.2005, 122, 134910.PubMedCrossRefGoogle Scholar
  6. 6.
    Smith, G. D.; Bedrov, D.; Li, L.; Byutner, O. A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites. J. Chem. Phys.2002, 117, 9478–9489.CrossRefGoogle Scholar
  7. 7.
    Liu, J.; Wu, Y.; Shen, J.; Gao, Y.; Zhang, L.; Cao, D. Polymernanoparticle interfacial behavior revisited: a molecular dynamics study. Phys. Chem. Chem. Phys.2011, 13, 13058–13069.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu, J.; Wu, S.; Zhang, L.; Wang, W.; Cao, D. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement. Phys. Chem. Chem. Phys.2011, 13, 518–529.PubMedCrossRefGoogle Scholar
  9. 9.
    Smith, J. S.; Bedrov, D.; Smith, G. D. A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos. Sci. Technol.2003, 63, 1599–1605.CrossRefGoogle Scholar
  10. 10.
    Goswami, M.; Sumpter, B. G. Effect of polymer-filler interaction strengths on the thermodynamic and dynamic properties of polymer nanocomposites. J. Chem. Phys.2009, 130, 134910.PubMedCrossRefGoogle Scholar
  11. 11.
    Cheng, S.; Carroll, B.; Bocharova, V.; Carrillo, J. M.; Sumpter, B. G.; Sokolov, A. P. Focus: structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions. J. Chem. Phys.2017, 146, 203201.PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng, S.; Holt, A. P.; Wang, H.; Fan, F.; Bocharova, V.; Martin, H.; Etampawala, T.; White, B. T.; Saito, T.; Kang, N. G.; Dadmun, M. D.; Mays, J. W.; Sokolov, A. P. Unexpected molecular weight effect in polymer nanocomposites. Phys. Rev. Lett.2016, 116, 038302.PubMedCrossRefGoogle Scholar
  13. 13.
    Voylov, D. N.; Holt, A. P.; Doughty, B.; Bocharova, V.; Meyer III, H. M.; Cheng, S.; Martin, H.; Dadmun, M.; Kisliuk, A.; Sokolov, A. P. Unraveling the molecular weight dependence of interfacial interactions in poly(2-vinylpyridine)/silica nanocomposites. ACS Macro Lett.2017, 6, 68–72.CrossRefGoogle Scholar
  14. 14.
    Karatrantos, A.; Clarke, N.; Composto, R. J.; Winey, K. I. Polymer conformations in polymer nanocomposites containing spherical nanoparticles. Soft Matter2015, 11, 382–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim, S. Y.; Meyer, H. W.; Saalwachter, K.; Zukoski, C. F. Polymer dynamics in PEG-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution. Macromolecules2012, 45, 4225–4237.CrossRefGoogle Scholar
  16. 16.
    Kim, S. Y.; Zukoski, C. F. Molecular weight effects on particle and polymer microstructure in concentrated polymer solutions. Macromolecules2013, 46, 6634–6643.CrossRefGoogle Scholar
  17. 17.
    Hattemer, G. D.; Arya, G. Viscoelastic properties of polymergrafted nanoparticle composites from molecular dynamics simulations. Macromolecules2015, 48, 1240–1255.CrossRefGoogle Scholar
  18. 18.
    Einstein, A. Zur theorie der brownschen bewegung. Annalen der physik1906, 324, 371–381.CrossRefGoogle Scholar
  19. 19.
    Sentjabrskaja, T.; Zaccarelli, E.; de Michele, C.; Sciortino, F.; Tartaglia, P.; Voigtmann, T.; Egelhaaf, S. U.; Laurati, M. Anomalous dynamics of intruders in a crowded environment of mobile obstacles. Nat. Commun.2016, 7, 11133.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wang, B.; Kuo, J.; Bae, S. C.; Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater.2012, 11, 481–485.PubMedCrossRefGoogle Scholar
  21. 21.
    Guan, J.; Wang, B.; Granick, S. Even hard-sphere colloidal suspensions display fickian yet non-Gaussian diffusion. ACS Nano2014, 8, 3331–3336.PubMedCrossRefGoogle Scholar
  22. 22.
    Hwang, J.; Kim, J.; Sung, B. J. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm. Phys. Rev. E2016, 94, 022614.PubMedCrossRefGoogle Scholar
  23. 23.
    Skaug, M. J.; Mabry, J.; Schwartz, D. K. Intermittent molecular hopping at the solid-liquid interface. Phys. Rev. Lett. 2013, 110, 256101.PubMedCrossRefGoogle Scholar
  24. 24.
    Saltzman, E. J.; Schweizer, K. S. Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids. Phys. Rev. E2008, 77, 051504.CrossRefGoogle Scholar
  25. 25.
    Chaudhuri, P.; Hurtado, P. I.; Berthier, L.; Kob, W. Relaxation dynamics in a transient network fluid with competing gel and glass phases. J. Chem. Phys.2015, 142, 174503.PubMedCrossRefGoogle Scholar
  26. 26.
    Kwon, G.; Sung, B. J.; Yethiraj, A. Dynamics in crowded environments: is non-Gaussian Brownian diffusion normal? J. Phys. Chem. B2014, 118, 8128–8134.PubMedCrossRefGoogle Scholar
  27. 27.
    Xue, C.; Zheng, X.; Chen, K.; Tian, Y.; Hu, G. Probing non-Gaussianity in confined diffusion of nanoparticles. J. Phys. Chem. Lett.2016, 7, 514–519.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang, B.; Anthony, S. M.; Bae, S. C.; Granick, S. Anomalous yet Brownian. Proc. Natl. Acad. Sci.2009, 106, 15160–15164.PubMedCrossRefGoogle Scholar
  29. 29.
    Volgin, I. V.; Larin, S. V.; Abad, E.; Lyulin, S. V. Molecular dynamics simulations of fullerene diffusion in polymer melts. Macromolecules2017, 50, 2207–2218.CrossRefGoogle Scholar
  30. 30.
    Desai, T. G.; Keblinski, P.; Kumar, S. K.; Granick, S. Modeling diffusion of adsorbed polymer with explicit solvent. Phys. Rev. Lett.2007, 98, 218301.PubMedCrossRefGoogle Scholar
  31. 31.
    Walder, R.; Nelson, N.; Schwartz, D. K. Single molecule observations of desorption-mediated diffusion at the solid-liquid interface. Phys. Rev. Lett.2011, 107, 156102.PubMedCrossRefGoogle Scholar
  32. 32.
    Mabry, J. N.; Schwartz, D. K. Tuning the flight length of molecules diffusing on a hydrophobic surface. J. Phys. Chem. Lett.2015, 6, 2065–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang, D. P.; Chin, H. Y.; He, C. L.; Stoykovich, M. P.; Schwartz, D. K. Polymer surface transport is a combination of in-plane diffusion and desorption-mediated flights. ACS Macro Lett.2016, 5, 509–514.CrossRefGoogle Scholar
  34. 34.
    Chien, W.; Chen, Y. L. Abnormal polymer transport in crowded attractive micropost arrays. Soft Matter2016, 12, 7969–7976.PubMedCrossRefGoogle Scholar
  35. 35.
    Wang, D.; Hu, R.; Mabry, J. N.; Miao, B.; Wu, D. T.; Koynov, K.; Schwartz, D. K. Scaling of polymer dynamics at an oil-water interface in regimes dominated by viscous drag and desorption-mediated flights. J. Am. Chem. Soc.2015, 137, 12312–12320.PubMedCrossRefGoogle Scholar
  36. 36.
    Yu, C.; Guan, J.; Chen, K.; Bae, S. C.; Granick, S. Single-molecule observation of long jumps in polymer adsorption. ACS Nano2013, 7, 9735–9742.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Bychuk, O. V.; O’Shaughnessy, B. Anomalous diffusion at liquid surfaces. Phys. Rev. Lett.1995, 74, 1795–1798.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Schunack, M.; Linderoth, T. R.; Rosei, F.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F. Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett.2002, 88, 156102.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pryamitsyn, V.; Ganesan, V. Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules2006, 39, 844–856.CrossRefGoogle Scholar
  40. 40.
    Schneider, G. J.; Nusser, K.; Neueder, S.; Brodeck, M.; Willner, L.; Farago, B.; Holderer, O.; Briels, W. J.; Richter, D. Anomalous chain diffusion in unentangled model polymer nanocomposites. Soft Matter2013, 9, 4336–4348.CrossRefGoogle Scholar
  41. 41.
    Skaug, M. J.; Mabry, J. N.; Schwartz, D. K. Single-molecule tracking of polymer surface diffusion. J. Am. Chem. Soc.2014, 136, 1327–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Dai, L. J.; Fu, C. L.; Zhu, Y. L.; Sun, Z. Y. Heterogeneous dynamics of unentangled chains in polymer nanocomposites. J. Chem. Phys. 2019, 150, 184903.PubMedCrossRefGoogle Scholar
  43. 43.
    Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086.CrossRefGoogle Scholar
  44. 44.
    Hardin, R.; Sloane, N.; Smith, W. Tables of spherical codes with icosahedral symmetry. Published electronically at 2000.
  45. 45.
    Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem.2013, 34, 2197–2211.PubMedCrossRefGoogle Scholar
  46. 46.
    Li, Y.; Kroger, M.; Liu, W. K. Dynamic structure of unentangled polymer chains in the vicinity of non-attractive nanoparticles. Soft Matter2014, 10, 1723–37.PubMedCrossRefGoogle Scholar
  47. 47.
    Hansen, J. P.; McDonald, I. R. in Theory of simple liquids, Fourth Edition, Academic Press, Oxford, 2013, pp. 311–361.CrossRefGoogle Scholar
  48. 48.
    Colmenero, J.; Alvarez, F.; Arbe, A. Self-motion and the a relaxation in a simulated glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior. Phys. Rev. E2002, 65, 041804.CrossRefGoogle Scholar
  49. 49.
    van der Meer, B.; Qi, W.; Sprakel, J.; Filion, L.; Dijkstra, M. Dynamical heterogeneities and defects in two-dimensional soft colloidal crystals. Soft Matter2015, 11, 9385–9392.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim, J.; Kim, C.; Sung, B. J. Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids. Phys. Rev. Lett.2013, 110, 047801.PubMedCrossRefGoogle Scholar
  51. 51.
    Zangi, R.; Rice, S. A. Cooperative dynamics in two dimensions. Phys. Rev. Lett.2004, 92, 035502.PubMedCrossRefGoogle Scholar
  52. 52.
    Chaudhuri, P.; Berthier, L.; Kob, W. Universal nature of particle displacements close to glass and jamming transitions. Phys. Rev. Lett.2007, 99, 060604.PubMedCrossRefGoogle Scholar
  53. 53.
    Dibble, C. J.; Kogan, M.; Solomon, M. J. Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity. Phys. Rev. E2006, 74, 041403.CrossRefGoogle Scholar
  54. 54.
    Hurtado, P. I.; Berthier, L.; Kob, W. Heterogeneous diffusion in a reversible gel. Phys. Rev. Lett.2007, 98, 135503.PubMedCrossRefGoogle Scholar
  55. 55.
    Miyagawa, H.; Hiwatari, Y.; Bernu, B.; Hansen, J. Molecular dynamics study of binary soft-sphere mixtures: jump motions of atoms in the glassy state. J. Chem. Phys.1988, 88, 3879–3886.CrossRefGoogle Scholar
  56. 56.
    Babayekhorasani, F.; Dunstan, D. E.; Krishnamoorti, R.; Conrad, J. C. Nanoparticle diffusion in crowded and confined media. Soft Matter2016, 12, 8407–8416.PubMedCrossRefGoogle Scholar
  57. 57.
    Kob, W.; Donati, C.; Plimpton, S. J.; Poole, P. H.; Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett.1997, 79, 2827–2830.CrossRefGoogle Scholar
  58. 58.
    Weeks, E. R.; Crocker, J. C.; Levitt, A. C.; Schofield, A.; Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science2000, 287, 627–631.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu, S. Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer1985, 26, 1855–1863.CrossRefGoogle Scholar
  60. 60.
    Gam, S.; Meth, J. S.; Zane, S. G.; Chi, C. Z.; Wood, B. A.; Seitz, M. E.; Winey, K. I.; Clarke, N.; Composto, R. J. Macromolecular diffusion in a crowded polymer nanocomposite. Macromolecules2011, 44, 3494–3501.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Li-Jun Dai
    • 1
    • 2
  • Cui-Liu Fu
    • 1
  • You-Liang Zhu
    • 1
  • Zhan-Wei Li
    • 1
  • Zhao-Yan Sun
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations