Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction

  • Hong-Ge TanEmail author
  • Gang Xia
  • Li-Xiang Liu
  • Xiao-Hui Niu
  • Qing-Hai Hao


A tetrahedral polyelectrolyte brush in the presence of trivalent counterions is researched under the condition of good solution by means of molecular dynamics simulations. Grafting density and charge fraction are varied to generate a series of surface patterns. Lateral microphase separation happens and various interesting pinned patches appear at appropriate charge fraction and grafting density. Through a careful analysis on the brush thickness, the pair correlation functions, the distributions of net charge, and the four states of trivalent counterions in the brush, we find that the ordered surface patterns and special properties are induced by the pure electrostatic correlation effect of trivalent ions even in the good solvent. Furthermore, the dependences of electrostatic correlation on the charge fraction of tethered chains are evaluated for fixed grafting density. Also, our results can serve as a guide for precise control over the stimuli-responsive materials rational and self-assembly of nanoparticles.


Surface patterns Tetrahedral polyelectrolyte brush Molecular dynamics simulation Electrostatic correlation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21474005 and 21674005) and the Fundamental Research Funds for the Central Universities (No. 3122018L007) and Quality Course Construction.


  1. 1.
    Rühe, J.; Ballauff, M.; Biesalski, M.; Dziezok, P.; Gröhn, F.; Johannsmann, D.; Houbenov, N.; Hugenberg, N.; Konradi, R.; Minko, S.; Motornov, M.; Netz, R. R.; Schmidt, M.; Seidel, C.; Stamm, M.; Stephan, T.; Usov, D.; Zhang, H. Polyelectrolyte brushes. Adv. Polym. Sci.2004, 165, 79–150.CrossRefGoogle Scholar
  2. 2.
    Hao, Q. H.; Zheng, Z.; Xia, G.; Tan, H. G. Brownian dynamics simulations of rigid polyelectrolyte chains grafting to spherical colloid. Chinese J. Polym. Sci.2018, 36, 791–798.CrossRefGoogle Scholar
  3. 3.
    Jaquet, B.; Wei, D.; Reck, B.; Reinhold, F.; Zhang, X. Y.; Wu, H.; Morbidelli, M. Stabilization of polymer colloid dispersions with pH-sensitive poly-acrylic acid brushes. Colloid Polym. Sci.2013, 291, 1659–1667.CrossRefGoogle Scholar
  4. 4.
    Zhang, X.; Yang, P. P.; Dai, Y. L.; Ma, P. A.; Li, X. J.; Cheng, Z. Y.; Hou, Z. Y.; Kang, X. J.; Li, C. X.; Lin, J. Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater.2013, 23, 4067–4078.CrossRefGoogle Scholar
  5. 5.
    Kreer, T. Polymer-brush lubrication: A review of recent theoretical advances. Soft Matter2016, 12, 3479–3501.CrossRefGoogle Scholar
  6. 6.
    ShamsiJazeyi, H.; Miller, C. A.; Wong, M. S.; Tour, J. M.; Verduzco, R. Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci.2014, 134, 40576.Google Scholar
  7. 7.
    Zhulina, E.; Singh, C.; Balazs, A. C. Behavior of tethered polyelectrolytes in poor solvents. J. Chem. Phy s.1998, 108, 1175–1183.CrossRefGoogle Scholar
  8. 8.
    Tagliazucchi, M.; Cruz, M. O. D. L.; Szleifer, I. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions. Proc. Natl. Acad. Sci.2010, 107, 5300–5305.CrossRefGoogle Scholar
  9. 9.
    Tagliazucchi, M.; Calvo, E. J.; Szleifer, I. Molecular modeling of responsive polymer films. AIChE J.2010, 56, 1952–1959.Google Scholar
  10. 10.
    Brettmann, B.; Pincus, P.; Tirrell, M. Lateral structure formation in polyelectrolyte brushes induced by multivalent ions. Macromolecules2017, 50, 1225–1235.CrossRefGoogle Scholar
  11. 11.
    Günther, J. U.; Ahrens, H.; Fö rster, S.; Helm, C. A. Bundle formation in polyelectrolyte brushes. Phys. Rev. Lett.2008, 101, 258303.Google Scholar
  12. 12.
    Yamada, T.; Kokado, K.; Higaki, Y.; Takahara, A.; Sada, K. Preparation and morphology variation of lipophilic polyelectrolyte brush functioning in nonpolar solvents. Chem. Lett.2014, 43, 1300–1302.CrossRefGoogle Scholar
  13. 13.
    Bracha, D.; Bar-Ziv, R. H. Dendritic and nanowire assemblies of condensed DNA polymer brushes. J. Am. Chem. Soc.2014, 136, 4945–4953.CrossRefGoogle Scholar
  14. 14.
    Yu, J.; Jackson, N. E.; Xu, X.; Brettmann, B. K.; Ruths, M.; Pablo, J. J. D.; Tirrell, M. Multivalent ions induce lateral structural inhomogeneities in polyelectrolyte brushes. Sci. Adv.2017, 3, 1497.CrossRefGoogle Scholar
  15. 15.
    Carrillo, J. M. Y.; Dobrynin, A. V. Morphologies of planar polyelectrolyte brushes in a poor solvent: Molecular dynamics simulations and scaling analysis. La ngmuir2009, 25, 13158–13168.Google Scholar
  16. 16.
    He, G. L.; Merlitz, H.; Sommer, J. U. Molecular dynamics simulations of polyelectrolyte brushes under poor solvent conditions: Origins of bundle formation. J. Chem. Phys.2014, 140, 104911.CrossRefGoogle Scholar
  17. 17.
    Jackson, N. E.; Brettmann, B. K.; Vishwanath, V.; Tirrell, M.; Pablo, J. J. D. Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes.. ACS Macro Lett.2017, 6, 155–160.CrossRefGoogle Scholar
  18. 18.
    Sandberg, D. J.; Carrillo, J. M. Y.; Dobrynin A. V. Molecular dynamics simulations of polyelectrolyte brushes: From single chains to bundles of chains. Langmuir2007, 23, 12716–12728.CrossRefGoogle Scholar
  19. 19.
    Samokhina, L.; Schrinner, M.; Ballauff, M. Binding of oppositely charged surfactants to spherical polyelectrolyte brushes: A study by cryogenic transmission electron microscopy. Langmuir2007, 23, 3615–3619.CrossRefGoogle Scholar
  20. 20.
    Chen, Q.; Bae, S. C.; Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature2011, 469, 381–384.CrossRefGoogle Scholar
  21. 21.
    Yang, S. W.; Gao, L. Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc.2006, 128, 9330–9331.CrossRefGoogle Scholar
  22. 22.
    Choueiri, R. M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E. M.; Querejeta-Fernández, A.; Han, L.; Xin, H. L.; Gang, O.; Zhulina, E. B.; Rubinstein, M.; Kumacheva, E. Surface patterning of nanoparticles with polymer patches. Nature2016, 538, 79–83.CrossRefGoogle Scholar
  23. 23.
    Kravchenko, V. S.; Potemkin, I. I. Self-assembly of rarely polymer-grafted nanoparticles in dilute solutions and on a surface: From non-spherical vesicles to graphene-like sheets. P olymer2018, 142, 23–32.Google Scholar
  24. 24.
    Ross, M. B.; Ku, J. C.; Vaccarezza, V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol.2015, 10, 453–458.CrossRefGoogle Scholar
  25. 25.
    Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev.2011, 111, 3736–3827.CrossRefGoogle Scholar
  26. 26.
    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.1995, 117, 1–19.CrossRefGoogle Scholar
  27. 27.
    Csajka, F. S.; Seidel, C. Strongly charged polyelectrolyte brushes: A molecular dynamics study. M acromolecules2000, 33, 2728–2739.CrossRefGoogle Scholar
  28. 28.
    Hao, Q. H.; Xia, G.; Tan, H. G.; Chen, E. Q.; Yang, S. Surface morphologies of spherical polyelectrolyte brushes induced by trivalent salt ions. Phys. Chem. Chem. Phys.2018, 20, 26542–26551.CrossRefGoogle Scholar
  29. 29.
    Hoda, N.; Larson, R. G. Explicit- and implicit-solvent molecular dynamics Simulations of complex formation between polycations and polyanions. M acromolecules2009, 42, 8851–8863.CrossRefGoogle Scholar
  30. 30.
    Huißmann, S.; Likos, C. N.; Blaak, R. Explicit vs implicit water simulations of charged dendrimers. Macromolecules2012, 45, 2562–2569.CrossRefGoogle Scholar
  31. 31.
    Carrillo, J. M. Y.; Dobrynin, A. V. Polyelectrolytes in salt solutions: Molecular dynamics simulations. M acromolecules2011, 44, 5798–5816.CrossRefGoogle Scholar
  32. 32.
    Grest, G. S.; Kremer, K.; Witten, T. A. Structure of many-arm star polymers: A molecular dynamics simulation. M acromolecules1987, 20, 1376.CrossRefGoogle Scholar
  33. 33.
    Ghelichi, M.; Qazvini, N. T. Self-organization of hydrophobic-capped triblock copolymers with polyelectrolyte midblock: A coarse-grained molecular dynamics simulation study. Soft Matter2016, 12, 4611–4620.CrossRefGoogle Scholar
  34. 34.
    Mei, Y.; Hoffmann, M.; Ballauff, M.; Jusufi, A. Spherical polyelectrolyte brushes in the presence of multivalent counterions: The effect of fluctuations and correlations as determined by molecular dynamics simulations. Phys. Rev. E2008, 77, 031805.CrossRefGoogle Scholar
  35. 35.
    Jusufi, A.; Likos, C. N.; Löwen, H. Counterion-induced entropic interactions in solutions of strongly stretched, osmotic polyelectrolyte stars. J. Chem. Phys.2002, 116, 11011–11027.CrossRefGoogle Scholar
  36. 36.
    Pollock, E. L.; Glosli, J. Comments on P3M, FMM, and the Ewald method for large periodic coulombic systems. Comput. Phys. Commun.1996, 95, 93–110.CrossRefGoogle Scholar
  37. 37.
    Lane, J. M. D.; Grest, G. S. Spontaneous asymmetry of coated spherical nanoparticles in solution and at liquid-vapor interfaces. Phys. Rev. Lett.2010, 104, 235501–235504.CrossRefGoogle Scholar
  38. 38.
    Chi, P.; Li, B. H.; Shi, A. C. Conformation transitions of a polyelectrolyte chain: A replica-exchange Monte-Carlo study. Phys. Rev. E2011, 84, 021804.CrossRefGoogle Scholar
  39. 39.
    Chi, P.; Wang, Z.; Yin, Y. H.; Li, B. H. Finite-length effects on the coil-globule transition of a strongly charged polyelectrolyte chain in a salt-free solvent. Phys. Rev. E2013, 87, 042608.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hong-Ge Tan
    • 1
    Email author
  • Gang Xia
    • 1
  • Li-Xiang Liu
    • 1
  • Xiao-Hui Niu
    • 1
  • Qing-Hai Hao
    • 1
  1. 1.College of ScienceCivil Aviation University of ChinaTianjinChina

Personalised recommendations