Advertisement

Conductivity of Poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black Ternary Composite Films

  • Hua-Gen XuEmail author
  • Mu-Chao Qu
  • Ya-Min Pan
  • Dirk W. Schubert
Article
  • 8 Downloads

Abstract

Poly(methyl methacrylate) (PMMA)/polystyrene (PS)/carbon black (CB) and poly(ethyl methacrylate) (PEMA)/PS/CB ternary composite films were obtained using solution casting technique to investigate double percolation effect. In both PMMA/PS/CB and PEMA/PS/CB ternary composite films, the CB particles prefer to locate into PS phase based on the results of calculating wetting coefficient, which is also confirmed by SEM images. The conductivity of the films was investigated, and the percolation threshold (φc) of both ternary composite films with different polymer blend ratios was determined by fitting the McLachlan GEM equation. Conductivity of PMMA/PS/CB ternary composite films showed a typical double percolation effect. However, due to the double emulsion structure of PEMA/PS polymer blends, the PEMA/PS/CB ternary composite films (PEMA/PS = 50/50) showed a higher φc, even CB only located in PS phase, which conflicts with the double percolation effect. A schematic diagram combined with SEM images was proposed to explain this phenomenon.

Keywords

Double percolation effect Conductivity Ternary composite films Compatibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Huagen Xu acknowledges the China Scholarship Council for funding a scholarship.

Supplementary material

10118_2020_2349_MOESM1_ESM.pdf (364 kb)
Conductivity of Poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black Ternary Composite Films

References

  1. 1.
    Liu, X. H.; Li, C. H.; Pan, Y. M.; Schubert, D. W.; Liu, C. T. Shear-induced rheological and electrical properties of molten poly (methyl methacrylate)/carbon black nanocomposites. Compos. Part B Eng.2019, 164, 37–44.CrossRefGoogle Scholar
  2. 2.
    Gulrez, S. K.; Ali Mohsin, M. E.; Shaikh, H.; Anis, A.; Pulose, A. M.; Yadav, M. K.; Qua, E. H.; Al-Zahrani, S. M. A review on electrically conductive polypropylene and polyethylene. Polym. Compos.2014, 35, 900–914.CrossRefGoogle Scholar
  3. 3.
    Krause, B.; Boldt, R.; Häußler, L.; Pötschke, P. Ultralow percolation threshold in polyamide 6.6/MWCNT composites. Compos. Sci. Technol.2015, 114, 119–125.CrossRefGoogle Scholar
  4. 4.
    Zhang, C.; Liu, X. H.; Liu, H.; Wang, Y. M.; Guo, Z. H.; Liu, C. T. Multi-walled carbon nanotube in a miscible PEO/PMMA blend: Thermal and rheological behavior. Polym. Test.2019, 75, 367–372.CrossRefGoogle Scholar
  5. 5.
    Zhang, F. F; Liu, X. H.; Zheng, G. Q.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Facile route to improve the crystalline memory effect: Electrospun composite fiber and annealing. Macromol. Chem. Phys.2018, 219, 1800236.CrossRefGoogle Scholar
  6. 6.
    Al-Saleh, M. H.; Sundararaj, U. An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Compos. Part A Appl. S.2008, 39, 284–293.CrossRefGoogle Scholar
  7. 7.
    Starý, Z.; Krückel, J.; Weck, C.; Schubert, D. W. Rheology and conductivity of carbon fibre composites with defined fibre lengths. Compos. Sci. Technol.2013, 85, 58–64.CrossRefGoogle Scholar
  8. 8.
    Huang, J. C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol.2002, 21, 299–313.CrossRefGoogle Scholar
  9. 9.
    Chen, J. W.; Cui, X. H.; Sui, K. Y.; Zhu, Y. T.; Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol.2017, 140, 99–105.CrossRefGoogle Scholar
  10. 10.
    Pan, Y. M.; Liu, X. H.; Hao, X. Q.; Starý, Z.; Schubert, D. W. Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology. Eur. Polym. J.2016, 78, 106–115.CrossRefGoogle Scholar
  11. 11.
    Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull.1991, 25, 265–271.CrossRefGoogle Scholar
  12. 12.
    Gubbels, F.; Jérôme, R.; Teyssie, P.; Vanlathem, E.; Deltour, R.; Calderone, A.; Parente, V. Brédas, J. L. Selective localization of carbon black in immiscible polymer blends: A useful tool to design electrical conductive composites. Macromolecules1994, 27, 1972–1974.CrossRefGoogle Scholar
  13. 13.
    Foulger, S. H. Reduced percolation thresholds of immiscible conductive blends of poly (ethylene-co-vinyl acetate) and high density polyethylene. Conference on electrical insulation and dielectric phenomena. IEEE Annual Report. 1998, Vol. 1, p. 282–287).Google Scholar
  14. 14.
    Xu, Z. B.; Zhao, C.; Gu, A. J; Fang, Z. P.; Tong, L. F. Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black. J. Appl. Polym. Sci.2007, 106, 2008–2017.CrossRefGoogle Scholar
  15. 15.
    Cheah, K.; Forsyth, M.; Simon, G. P. Processing and morphological development of carbon black filled conducting blends using a binary host of poly(styrene-co-acrylonitrile) and poly(styrene). J. Polym. Sci., Part B: Polym. Phys.2000, 38, 3106–3119.CrossRefGoogle Scholar
  16. 16.
    Calberg, C.; Blacher, S.; Gubbels, F.; Brouers, F.; Deltour, R.; Jérôme, R. Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J. Phys. D Appl. Phys.1999, 32, 1517.CrossRefGoogle Scholar
  17. 17.
    Mamunya, Y.; Levchenko, V.; Boiteux, G.; Seytre, G.; Zanoaga, M.; Tanasa, F.; Lebedev, E. Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym. Compos. 2016, 37, 2467–2477.CrossRefGoogle Scholar
  18. 18.
    Nasti, G.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V. Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer2016, 99, 193–203.CrossRefGoogle Scholar
  19. 19.
    Chen, Y.; Yang, Q.; Huang, Y. J.; Liao, X.; Niu, Y. H. Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing. Polymer2015, 79, 159–170.CrossRefGoogle Scholar
  20. 20.
    Dil, E. J.; Favis, B. D. Localization of micro and nano-silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system. Polymer2015, 77, 156–166.CrossRefGoogle Scholar
  21. 21.
    Harrats, C.; Groeninckx, G.; Thomas, S. Micro-and nanostructured multiphase polymer blend systems: Phase morphology and interfaces. CRC press, 2015.Google Scholar
  22. 22.
    Utrachi, L. A. Polymer alloys and blends. 1990, Chapter 3.Google Scholar
  23. 23.
    Paul, D. R.; Barlow, J. W. Polymer blends. J. Macromol. Sci. R. M. C. 1980, 18, 109–168.CrossRefGoogle Scholar
  24. 24.
    Kim, J. H.; Park, D. S.; Kim, C. K. Characterization of the interaction energies for polystyrene blends with various methacrylate polymers. J. Polym. Sci., Part B: Polym. Phys.2000, 38, 2666–2677.CrossRefGoogle Scholar
  25. 25.
    Schubert, D. W.; Stamm, M.; Müller, A. H. E. Neutron reflectometry studies on the interfacial width between polystyrene and various poly(alkylmethacrylates). Polym. Eng. Sci.1999, 39, 1501–1507.CrossRefGoogle Scholar
  26. 26.
    Voulgaris, D.; Petridis, D. Emulsifying effect of dimethyldiocta-decylammonium-hectorite in polystyrene/poly(ethyl methacrylate) blends. Polymer2002, 43, 2213–2218.CrossRefGoogle Scholar
  27. 27.
    Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol.2016, 123, 17–31.CrossRefGoogle Scholar
  28. 28.
    Radzuan, N. A. M.; Sulong, A. B.; Sahari, J. A review of electrical conductivity models for conductive polymer composite. Int. J Hydrogen Energ.2017, 42, 9262–9273.CrossRefGoogle Scholar
  29. 29.
    McLachlan, D. S.; Blaszkiewicz, M.; Newnham, R. E. Electrical resistivity of composites. J. Am. Ceram. Soc.1990, 73, 2187–2203.CrossRefGoogle Scholar
  30. 30.
    Sahini, M.; Sahimi, M. Applications of percolation theory. CRC Press, 2014.Google Scholar
  31. 31.
    Liu, X. H.; Krückel, J.; Zheng, G. Q.; Schubert, D. W. Mapping the electrical conductivity of poly (methyl methacrylate)/carbon black composites prior to and after shear. ACS Appl. Mater. Interfaces2013, 5, 8857–8860.CrossRefGoogle Scholar
  32. 32.
    Starý, Z. Thermodynamics and morphology and compatibilization of polymer blends. in Characterization of polymer blends. Eds. by Thomas, S.; Grohens, Y.; Jyotishkumar, P. Wiley-VCH Verlag GmbH & Co. KGaA, 2014, 93–132.Google Scholar
  33. 33.
    Pajula, K.; Taskinen, M.; Lehto, V. P.; Ketolainen, J.; Korhonen, O. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Mol. Pharmaceut.2010, 7, 795–804.CrossRefGoogle Scholar
  34. 34.
    Gedde, U. W. Polymer physics. Springer Science & Business Media, 2013.Google Scholar
  35. 35.
    Sammler, R. L.; Dion, R. P.; Carriere, C. J.; Cohen, A. Compatibility of high polymers probed by interfacial tension. Rheol. Acta1992, 31, 554–564.CrossRefGoogle Scholar
  36. 36.
    Schubert, D. W.; Stamm, M. Influence of chain length on the interface width of an incompatible polymer blend. EPL1996, 35, 419.CrossRefGoogle Scholar
  37. 37.
    Wu, S. Polymer interfaces and adhesion. Marcel Dekker, New York, 1982.Google Scholar
  38. 38.
    Deng, H.; Lin, L.; Ji, M. Z.; Zhang, S. M.; Yang, M. B.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci.2014, 39, 627–655.CrossRefGoogle Scholar
  39. 39.
    Baudouin, A. C.; Devaux, J.; Bailly, C. Localization of carbon nanotubes at the interface in blends of polyamide and ethyleneacrylate copolymer. Polymer2010, 51, 1341–1354.CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Cao, Q.; Song, Y. H.; Tan, Y. Q.; Zheng, Q. Conductive and viscoelastic behaviors of carbon black filled polystyrene during annealing. Carbon2010, 48, 4268–4275.CrossRefGoogle Scholar
  42. 42.
    Pan, Y. M.; Liu, X. H.; Kaschta, J.; Liu, C. T.; Schubert, D. W. Reversal phenomena of molten immiscible polymer blends during creep-recovery in shear. J. Rheol.2017, 61, 759–767.CrossRefGoogle Scholar
  43. 43.
    Liu, T.; Huang, K. Q.; Li, L. W.; Gu, Z. P.; Liu, X. H.; Peng, X. F.; Kuang, T. R. High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: Fabrication, in vitro and in vivo biocompatibility evaluation. Compos. Sci. Technol.2019, 175, 100–110.CrossRefGoogle Scholar
  44. 44.
    Elias, L.; Fenouillot, F.; Majesté, J. C.; Alcouffe, P.; Cassagnau, P. Immiscible polymer blends stabilized with nano-silica particles: Rheology and effective interfacial tension. Polymer2008, 49, 4378–4385.CrossRefGoogle Scholar
  45. 45.
    Fenouillot, F.; Cassagnau, P.; Majesté, J. C. Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. Polymer2009, 50, 1333–1350.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hua-Gen Xu
    • 1
    Email author
  • Mu-Chao Qu
    • 1
  • Ya-Min Pan
    • 2
  • Dirk W. Schubert
    • 1
    • 3
  1. 1.Institute of Polymer MaterialsFriedrieh-Alexander-University Erlangen-NurembergErlangenGermany
  2. 2.College of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of EducationZhengzhou UniversityZhengzhouChina
  3. 3.Bavarian Polymer InstituteFürthGermany

Personalised recommendations