Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Conductivity of Poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black Ternary Composite Films

  • 32 Accesses

Abstract

Poly(methyl methacrylate) (PMMA)/polystyrene (PS)/carbon black (CB) and poly(ethyl methacrylate) (PEMA)/PS/CB ternary composite films were obtained using solution casting technique to investigate double percolation effect. In both PMMA/PS/CB and PEMA/PS/CB ternary composite films, the CB particles prefer to locate into PS phase based on the results of calculating wetting coefficient, which is also confirmed by SEM images. The conductivity of the films was investigated, and the percolation threshold (ϕc) of both ternary composite films with different polymer blend ratios was determined by fitting the McLachlan GEM equation. Conductivity of PMMA/PS/CB ternary composite films showed a typical double percolation effect. However, due to the double emulsion structure of PEMA/PS polymer blends, the PEMA/PS/CB ternary composite films (PEMA/PS = 50/50) showed a higher ϕc, even CB only located in PS phase, which conflicts with the double percolation effect. A schematic diagram combined with SEM images was proposed to explain this phenomenon.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Liu, X. H.; Li, C. H.; Pan, Y. M.; Schubert, D. W.; Liu, C. T. Shear-induced rheological and electrical properties of molten poly (methyl methacrylate)/carbon black nanocomposites. Compos. Part B Eng.2019, 164, 37–44.

  2. 2

    Gulrez, S. K.; Ali Mohsin, M. E.; Shaikh, H.; Anis, A.; Pulose, A. M.; Yadav, M. K.; Qua, E. H.; Al-Zahrani, S. M. A review on electrically conductive polypropylene and polyethylene. Polym. Compos.2014, 35, 900–914.

  3. 3

    Krause, B.; Boldt, R.; Häußler, L.; Pötschke, P. Ultralow percolation threshold in polyamide 6.6/MWCNT composites. Compos. Sci. Technol.2015, 114, 119–125.

  4. 4

    Zhang, C.; Liu, X. H.; Liu, H.; Wang, Y. M.; Guo, Z. H.; Liu, C. T. Multi-walled carbon nanotube in a miscible PEO/PMMA blend: Thermal and rheological behavior. Polym. Test.2019, 75, 367–372.

  5. 5

    Zhang, F. F; Liu, X. H.; Zheng, G. Q.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Facile route to improve the crystalline memory effect: Electrospun composite fiber and annealing. Macromol. Chem. Phys.2018, 219, 1800236.

  6. 6

    Al-Saleh, M. H.; Sundararaj, U. An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Compos. Part A Appl. S.2008, 39, 284–293.

  7. 7

    Starý, Z.; Krückel, J.; Weck, C.; Schubert, D. W. Rheology and conductivity of carbon fibre composites with defined fibre lengths. Compos. Sci. Technol.2013, 85, 58–64.

  8. 8

    Huang, J. C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol.2002, 21, 299–313.

  9. 9

    Chen, J. W.; Cui, X. H.; Sui, K. Y.; Zhu, Y. T.; Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol.2017, 140, 99–105.

  10. 10

    Pan, Y. M.; Liu, X. H.; Hao, X. Q.; Starý, Z.; Schubert, D. W. Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology. Eur. Polym. J.2016, 78, 106–115.

  11. 11

    Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull.1991, 25, 265–271.

  12. 12

    Gubbels, F.; Jérôme, R.; Teyssie, P.; Vanlathem, E.; Deltour, R.; Calderone, A.; Parente, V. Brédas, J. L. Selective localization of carbon black in immiscible polymer blends: A useful tool to design electrical conductive composites. Macromolecules1994, 27, 1972–1974.

  13. 13

    Foulger, S. H. Reduced percolation thresholds of immiscible conductive blends of poly (ethylene-co-vinyl acetate) and high density polyethylene. Conference on electrical insulation and dielectric phenomena. IEEE Annual Report. 1998, Vol. 1, p. 282–287).

  14. 14

    Xu, Z. B.; Zhao, C.; Gu, A. J; Fang, Z. P.; Tong, L. F. Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black. J. Appl. Polym. Sci.2007, 106, 2008–2017.

  15. 15

    Cheah, K.; Forsyth, M.; Simon, G. P. Processing and morphological development of carbon black filled conducting blends using a binary host of poly(styrene-co-acrylonitrile) and poly(styrene). J. Polym. Sci., Part B: Polym. Phys.2000, 38, 3106–3119.

  16. 16

    Calberg, C.; Blacher, S.; Gubbels, F.; Brouers, F.; Deltour, R.; Jérôme, R. Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J. Phys. D Appl. Phys.1999, 32, 1517.

  17. 17

    Mamunya, Y.; Levchenko, V.; Boiteux, G.; Seytre, G.; Zanoaga, M.; Tanasa, F.; Lebedev, E. Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym. Compos. 2016, 37, 2467–2477.

  18. 18

    Nasti, G.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V. Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer2016, 99, 193–203.

  19. 19

    Chen, Y.; Yang, Q.; Huang, Y. J.; Liao, X.; Niu, Y. H. Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing. Polymer2015, 79, 159–170.

  20. 20

    Dil, E. J.; Favis, B. D. Localization of micro and nano-silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system. Polymer2015, 77, 156–166.

  21. 21

    Harrats, C.; Groeninckx, G.; Thomas, S. Micro-and nanostructured multiphase polymer blend systems: Phase morphology and interfaces. CRC press, 2015.

  22. 22

    Utrachi, L. A. Polymer alloys and blends. 1990, Chapter 3.

  23. 23

    Paul, D. R.; Barlow, J. W. Polymer blends. J. Macromol. Sci. R. M. C. 1980, 18, 109–168.

  24. 24

    Kim, J. H.; Park, D. S.; Kim, C. K. Characterization of the interaction energies for polystyrene blends with various methacrylate polymers. J. Polym. Sci., Part B: Polym. Phys.2000, 38, 2666–2677.

  25. 25

    Schubert, D. W.; Stamm, M.; Müller, A. H. E. Neutron reflectometry studies on the interfacial width between polystyrene and various poly(alkylmethacrylates). Polym. Eng. Sci.1999, 39, 1501–1507.

  26. 26

    Voulgaris, D.; Petridis, D. Emulsifying effect of dimethyldiocta-decylammonium-hectorite in polystyrene/poly(ethyl methacrylate) blends. Polymer2002, 43, 2213–2218.

  27. 27

    Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol.2016, 123, 17–31.

  28. 28

    Radzuan, N. A. M.; Sulong, A. B.; Sahari, J. A review of electrical conductivity models for conductive polymer composite. Int. J Hydrogen Energ.2017, 42, 9262–9273.

  29. 29

    McLachlan, D. S.; Blaszkiewicz, M.; Newnham, R. E. Electrical resistivity of composites. J. Am. Ceram. Soc.1990, 73, 2187–2203.

  30. 30

    Sahini, M.; Sahimi, M. Applications of percolation theory. CRC Press, 2014.

  31. 31

    Liu, X. H.; Krückel, J.; Zheng, G. Q.; Schubert, D. W. Mapping the electrical conductivity of poly (methyl methacrylate)/carbon black composites prior to and after shear. ACS Appl. Mater. Interfaces2013, 5, 8857–8860.

  32. 32

    Starý, Z. Thermodynamics and morphology and compatibilization of polymer blends. in Characterization of polymer blends. Eds. by Thomas, S.; Grohens, Y.; Jyotishkumar, P. Wiley-VCH Verlag GmbH & Co. KGaA, 2014, 93–132.

  33. 33

    Pajula, K.; Taskinen, M.; Lehto, V. P.; Ketolainen, J.; Korhonen, O. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Mol. Pharmaceut.2010, 7, 795–804.

  34. 34

    Gedde, U. W. Polymer physics. Springer Science & Business Media, 2013.

  35. 35

    Sammler, R. L.; Dion, R. P.; Carriere, C. J.; Cohen, A. Compatibility of high polymers probed by interfacial tension. Rheol. Acta1992, 31, 554–564.

  36. 36

    Schubert, D. W.; Stamm, M. Influence of chain length on the interface width of an incompatible polymer blend. EPL1996, 35, 419.

  37. 37

    Wu, S. Polymer interfaces and adhesion. Marcel Dekker, New York, 1982.

  38. 38

    Deng, H.; Lin, L.; Ji, M. Z.; Zhang, S. M.; Yang, M. B.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci.2014, 39, 627–655.

  39. 39

    Baudouin, A. C.; Devaux, J.; Bailly, C. Localization of carbon nanotubes at the interface in blends of polyamide and ethyleneacrylate copolymer. Polymer2010, 51, 1341–1354.

  40. 40

    https://www.surface-tension.desolid-surface-energy.htm

  41. 41

    Cao, Q.; Song, Y. H.; Tan, Y. Q.; Zheng, Q. Conductive and viscoelastic behaviors of carbon black filled polystyrene during annealing. Carbon2010, 48, 4268–4275.

  42. 42

    Pan, Y. M.; Liu, X. H.; Kaschta, J.; Liu, C. T.; Schubert, D. W. Reversal phenomena of molten immiscible polymer blends during creep-recovery in shear. J. Rheol.2017, 61, 759–767.

  43. 43

    Liu, T.; Huang, K. Q.; Li, L. W.; Gu, Z. P.; Liu, X. H.; Peng, X. F.; Kuang, T. R. High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: Fabrication, in vitro and in vivo biocompatibility evaluation. Compos. Sci. Technol.2019, 175, 100–110.

  44. 44

    Elias, L.; Fenouillot, F.; Majesté, J. C.; Alcouffe, P.; Cassagnau, P. Immiscible polymer blends stabilized with nano-silica particles: Rheology and effective interfacial tension. Polymer2008, 49, 4378–4385.

  45. 45

    Fenouillot, F.; Cassagnau, P.; Majesté, J. C. Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. Polymer2009, 50, 1333–1350.

Download references

Acknowledgments

Huagen Xu acknowledges the China Scholarship Council for funding a scholarship.

Author information

Correspondence to Hua-Gen Xu.

Electronic Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Qu, M., Pan, Y. et al. Conductivity of Poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black Ternary Composite Films. Chin J Polym Sci 38, 288–297 (2020). https://doi.org/10.1007/s10118-020-2349-2

Download citation

Keywords

  • Double percolation effect
  • Conductivity
  • Ternary composite films
  • Compatibility