Advertisement

Chinese Journal of Polymer Science

, Volume 38, Issue 3, pp 240–247 | Cite as

Ring-opening Copolymerization of ε-Caprolactone and δ-Valerolactone Catalyzed by a 2,6-Bis(amino)phenol Zinc Complex

  • Qian Hu
  • Su-Yun JieEmail author
  • Pierre Braunstein
  • Bo-Geng Li
Article
  • 15 Downloads

Abstract

In combination with methyllithium, a 2,6-bis(amino)phenol zinc complex 1 was used in the ring-opening polymerization of δ-valerolactone in the absence or presence of benzyl alcohol and showed high efficiency, mainly producing cyclic and linear polyvalerolactones, respectively. On the basis of homopolymerization, the ring-opening copolymerization of ε-caprolactone and δ-valerolactone was investigated. The P(CL-co-VL) random copolymers, PCL-b-PVL and PVL-b-PCL diblock copolymers, were prepared by varying the feeding strategy (premixing or sequential feeding). The copolymer composition was adjusted by varying the feeding ratio of two monomers. The structure and thermal properties of obtained polymers were characterized by GPC, 1H-NMR, 13C-NMR, MALDI-TOF mass spectroscopy, and DSC, respectively.

Keywords

Zn complex Copolymerization Block copolymer Random copolymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2016YFC1100801) and the State Key Laboratory of Chemical Engineering (No. SKL-ChE-18D01).

References

  1. 1.
    Sangeetha, V. H.; Deka, H.; Varghese, T. O.; Nayak, S. K. State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym. Compos.2018, 39, 81–101.CrossRefGoogle Scholar
  2. 2.
    Pant, H. R.; Kim, H. J.; Bhatt, L. R.; Joshi, M. K.; Kim, E. K.; Kim, J. I.; Abdal-hay, A.; Hui, K. S.; Kim, C. S. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications. Appl. Surf. Sci.2013, 285, 538–544.CrossRefGoogle Scholar
  3. 3.
    Cameron, D. J. A.; Shaver, M. P. Aliphatic polyester polymer stars: Synthesis, properties and applications in biomedicine and nanotechnology. Chem. Soc. Rev.2011, 40, 1761–1776.CrossRefGoogle Scholar
  4. 4.
    Shin, E. J.; Brown, H. A.; Gonzalez, S.; Jeong, W.; Hedrick, J. L.; Waymouth, R. M. Zwitterionic copolymerization: Synthesis of cyclic gradient copolymers. Angew. Chem. Int. Ed.2011, 50, 6388–6391.CrossRefGoogle Scholar
  5. 5.
    Stirling, E.; Champouret, Y.; Visseaux, M. Catalytic metal-based systems for controlled statistical copolymerisation of lactide with a lactone. Polym. Chem.2018, 9, 2517–2531.CrossRefGoogle Scholar
  6. 6.
    Rad’Kova, N.; Rad’Kov, V.; Cherkasov, A.; Kovylina, T.; Trifonov, A. Lanthanide bis(borohydride) complexes coordinated by tetradentate phenoxide ligand: Synthesis, structure, and catalytic activity in ring-opening polymerization of rac-lactide and ε-caprolactone. Inorg. Chim. Acta2019, 489, 132–139.CrossRefGoogle Scholar
  7. 7.
    Cho, J.; Chun, M. K.; Nayab, S.; Jeong, J. H. Synthesis and structures of copper(II) complexes containing N,N-bidentate N-substituted phenylethanamine derivatives as pre-catalysts for heterotactic-enriched polylactide. Polyhedron2019, 163, 54–62.CrossRefGoogle Scholar
  8. 8.
    Caballero-Jiménez, D.; García-de-Jesús, O.; Lopez, N.; Reyes-Ortega, Y.; Muñoz-Hernández, M. Tetranuclear complexes of group 12 and 13 supported on a polynucleating ligand and activity studies in the ROP of rac-lactide. Inorg. Chim. Acta2019, 489, 120–125.CrossRefGoogle Scholar
  9. 9.
    Dou, J.; Zhu, D.; Zhang, W.; Wang, R.; Wang, S.; Zhang, Q.; Zhang, X.; Sun, W. H. Highly efficient iron(II) catalysts toward ring opening polymerization of ε-caprolactone through in situ initiation. Inorg. Chim. Acta2019, 488, 299–303.CrossRefGoogle Scholar
  10. 10.
    Munzeiwa, W. A.; Nyamori, V. O.; Omondi, B. N,O-aminophenolate Mg(II) and Zn(II) Schiff base complexes: Synthesis and application in ring-opening polymerization of ε-caprolactone and lactides. Inorg. Chim. Acta2019, 487, 264–274.CrossRefGoogle Scholar
  11. 11.
    Chen, X.; Wang, B.; Pan, L.; Li, Y. Homoleptic, bis-ligated magnesium complexes for ring-opening polymerization of lactide and lactones: Synthesis, structure, polymerization behavior and mechanism studies. Appl. Organomet. Chem.2019, 33, e4770.CrossRefGoogle Scholar
  12. 12.
    Steiniger, P.; Schäfer, P. M.; Wölper, C.; Henkel, J.; Ksiazkiewicz, A. N.; Pich, A.; Herres-Pawlis, S.; Schulz, S. Synthesis, structures, and catalytic activity of homo- and heteroleptic ketoiminate zinc complexes in lactide polymerization. Eur. J. Inorg. Chem.2018, 2018, 4014–4021.CrossRefGoogle Scholar
  13. 13.
    González, D. M.; Cisterna, J.; Brito, I.; Roisnel, T.; Hamon, J.; Manzur, C. Binuclear Schiff-base zinc(II) complexes: Synthesis, crystal structures and reactivity toward ring opening polymerization of rac-lactide. Polyhedron2019, 162, 91–99.CrossRefGoogle Scholar
  14. 14.
    Yang, Z.; Hu, C.; Duan, R.; Sun, Z.; Zhang, H.; Pang, X.; Li, L. Salenmanganese complexes and their application in the ring-opening polymerization of lactide and ε-caprolactone. Asian J. Org. Chem.2019, 8, 376–384.CrossRefGoogle Scholar
  15. 15.
    Li, M.; Behzadi, S.; Chen, M.; Pang, W.; Wang, F.; Tan, C. Phenoxyimine ligands bearing nitrogen-containing second coordination spheres for zinc catalyzed stereoselective ring-opening polymerization of rac-lactide. Organometallics2019, 38, 461–468.CrossRefGoogle Scholar
  16. 16.
    Saeed, W.; Al-Odayni, A.; Alghamdi, A.; Alrahlah, A.; Aouak, T. Thermal properties and non-isothermal crystallization kinetics of poly(δ-valerolactone) and poly(δ-valerolactone)/titanium dioxide nanocomposites. Crystals2018, 8, 452.CrossRefGoogle Scholar
  17. 17.
    D’auria, I.; Mazzeo, M.; Pappalardo, D.; Lamberti, M.; Pellecchia, C. Ring-opening polymerization of cyclicesters promoted by phosphido-diphosphine pincergroup 3 complexes. J. Polym. Sci., Part A: Polym. Chem.2011, 49, 403–413.CrossRefGoogle Scholar
  18. 18.
    Khalil, M. I.; Al-Shamary, D. O. H.; Al-Deyab, S. S. Synthesis of poly(δ-valerolactone) by activated monomer polymerization, its characterization and potential medical application. Asian J. Biochem. Pharm. Res.2015, 5, 137–147.Google Scholar
  19. 19.
    Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci.2010, 35, 1217–1256.CrossRefGoogle Scholar
  20. 20.
    Duale, K.; Zięba, M.; Chaber, P.; Di Fouque, D.; Memboeuf, A.; Peptu, C.; Radecka, I.; Kowalczuk, M.; Adamus, G. Molecular level structure of biodegradable poly(δ-valerolactone) obtained in the presence of boric acid. Molecules2018, 23, 2034.CrossRefGoogle Scholar
  21. 21.
    Saeed, W. S.; Al-Odayni, A.; Ali Alghamdi, A.; Abdulaziz Al-Owais, A.; Semlali, A.; Aouak, T. Miscibility of poly(ethylene-co-vinylalcohol)/poly(δvalerolactone) blend and tissue engineering scaffold fabrication using naphthalene as porogen. Polym. Plast. Technol. Eng.2018, 58, 1–23.Google Scholar
  22. 22.
    Lee, H.; Zeng, F.; Dunne, M.; Allen, C. Methoxy poly(ethylene glycol)-block-poly(δ-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules2005, 6, 3119–3128.CrossRefGoogle Scholar
  23. 23.
    Nair, K. L.; Jagadeeshan, S.; Nair, S. A.; Kumar, G. S. V. Evaluation of triblock copolymeric micelles of δ-valerolactone and poly(ethylene glycol) as a competent vector for doxorubicin delivery against cancer. J. Nanobiotechnol.2011, 9, 42.CrossRefGoogle Scholar
  24. 24.
    Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Gamma-valerolactone. A sustainable platform molecule derived from lignocellulosic biomass. Green Chem.2013, 15, 584–595.CrossRefGoogle Scholar
  25. 25.
    Alghamdi, A. A.; Saeed, W. S.; Al-Odayni, A.; Alharthi, F. A.; Semlali, A.; Aouak, T. Poly(ethylene-co-vinylalcohol)/poly(δ-valerolactone)/aspirin composite: Model for a new drug-carrier system. Polymers2019, 11, 439.CrossRefGoogle Scholar
  26. 26.
    Wu, T.; Wei, Z.; Ren, Y.; Yu, Y.; Leng, X.; Li, Y. Highly branched linear-comb random copolyesters of ε-caprolactone and δ-valerolactone: Isodimorphism, mechanical properties and enzymatic degradation behavior. Polym. Degrad. Stab.2018, 155, 173–182.CrossRefGoogle Scholar
  27. 27.
    Zhang, L.; Dong, H.; Li, M.; Wang, L.; Liu, Y.; Wang, L.; Fu, S. Fabrication of polylactic acid-modified carbon black composites into improvement of levelness and mechanical properties of spun-dyeing polylactic acid composites membrane. ACS Sustain. Chem. Eng.2018, 7, 688–696.CrossRefGoogle Scholar
  28. 28.
    Xiao, Y.; Pan, J.; Wang, D.; Heise, A.; Lang, M. Chemo-enzymatic synthesis of poly(4-piperidine lactone-b-ω-pentadecalactone) block copolymers as biomaterials with antibacterial properties. Biomacromolecules2018, 19, 2673–2681.CrossRefGoogle Scholar
  29. 29.
    Wilson, J. A.; Hopkins, S. A.; Wright, P. M.; Dove, A. P. Synthesis of ω-pentadecalactone copolymers with independently tunable thermal and degradation behavior. Macromolecules2015, 48, 950–958.CrossRefGoogle Scholar
  30. 30.
    Hong, M.; Tang, X.; Newell, B. S.; Chen, E. Y. X. “Nonstrained” γ-butyrolactone-based copolyesters: Copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules2017, 50, 8469–8479.CrossRefGoogle Scholar
  31. 31.
    Fernández, J.; Etxeberria, A.; Sarasua, J. In vitro degradation studies and mechanical behavior of poly(εcaprolactone-co-δvalerolactone) and poly(ε-caprolactone-co-L-lactide) with random and semi-alternating chain microstructures. Eur. Polym. J.2015, 71, 585–595.CrossRefGoogle Scholar
  32. 32.
    Hunley, M. T.; Beers, K. L. Nonlinear method for determining reactivity ratios of ring-opening copolymerizations. Macromolecules2013, 46, 1393–1399.CrossRefGoogle Scholar
  33. 33.
    Fernández, J.; Etxeberria, A.; Sarasua, J. R. Synthesis, structure and properties of poly(L-lactide-co-caprolactone) statistical copolymers. J. Mech. Behav. Biomed. Mater.2012, 9, 100–112.CrossRefGoogle Scholar
  34. 34.
    Chandra, R.; Rustgi, R. Biodegradable polymers. Prog. Polym. Sci.1998, 23, 1273–1335.CrossRefGoogle Scholar
  35. 35.
    Faÿ, F.; Renard, E.; Langlois, V.; Linossier, I.; Vallée-Rehel, K. Development of poly(εcaprolactone-co-L-lactide) and poly(ε-caprolactone-co-δ-valerolactone) as new degradable binder used for antifouling paint. Eur. Polym. J.2007, 43, 4800–4813.CrossRefGoogle Scholar
  36. 36.
    Hu, Q.; Jie, S.; Braunstein, P.; Li, B. Highly active tridentate aminophenol zinc complexes for the catalytic ring-opening polymerization of ε-caprolactone. J. Organomet. Chem.2019, 882, 1–9.CrossRefGoogle Scholar
  37. 37.
    Hunley, M. T.; Sari, N.; Beers, K. L. Microstructure analysis and model discrimination of enzyme-catalyzed copolyesters. ACS Macro Lett.2013, 2, 375–379.CrossRefGoogle Scholar
  38. 38.
    Save, M.; Schappacher, M.; Soum, A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. General aspects and kinetics. Macromol. Chem. Phys.2002, 203, 889–899.CrossRefGoogle Scholar
  39. 39.
    Piedra-Arroni, E.; Ladavière, C.; Amgoune, A.; Bourissou, D. Ring-opening polymerization with Zn(C6F5)2-based lewis pairs: Original and efficient approach to cyclic polyesters. J. Am. Chem. Soc.2013, 135, 13306–13309.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qian Hu
    • 1
  • Su-Yun Jie
    • 1
    Email author
  • Pierre Braunstein
    • 2
  • Bo-Geng Li
    • 1
  1. 1.State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
  2. 2.Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire de Chimie de CoordinationStrasbourg CedexFrance

Personalised recommendations