Chinese Journal of Polymer Science

, Volume 38, Issue 3, pp 248–256 | Cite as

Infectious Behavior in Photo-oxidation of Polymers

  • Xuan Liu
  • Xiao-Peng Ren
  • Rui YangEmail author


When a polymer is used together with others, its aging process will be affected by the adjacent polymers. This infectious behavior between polymers makes the aging process more complex than that of an individual material. In this study, infectious behavior in photo-oxidation of polymers was investigated. Polypropylenes (PPs), an unstabilized PP and a commercial PP, were chosen as the infection sources. Six typical polymers, high density polyethylene (HDPE), low density polyethylene (LDPE), polystyrene (PS), polycarbonate (PC), poly(ethylene terephthalate) (PET), and polyamide 6 (PA6), were used as the targets. The degree of oxidation of the targets was evaluated by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). An accelerating effect of two infection sources on the photo-oxidation of the target polymers was observed. Potential infectious agents from the infection sources were detected by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) and gas chromatography (GC). The acceleration effect of two main infectious agents, i.e. acetone and acetic acid, on the photo-oxidation of the commercial PP was verified. The infectious effect of the infection source on the target polymer was considered to be a comprehensive result of the effects of a variety of infectious agents.


Photo-oxidation Infection source Infectious agent Polypropylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 51673111). We also gratefully acknowledge Jing Li, Chunsong Li, and Professor Qi Lu for their kind help in GC measurements.


  1. 1.
    Ding, X. L.; Wang, S.; Shan, Z. H. Automotive interior decoration materials. Leather Science and Engineering (in Chinese)2017, 27, 36–39.Google Scholar
  2. 2.
    Zheng, H.; Wang, C.; Jiang, F. Development trend of the elastomers used in inner tube and innerliners. China Elastomerics (in Chinese)2011, 21, 98–103.Google Scholar
  3. 3.
    Ma, J. H.; Zhang, L. Q.; Wu, Y. P. Properties of tire tread composite and their mechanism. Polym. Bull.2014, 1–9.Google Scholar
  4. 4.
    Moreno, D. D. P.; Saron, C. Influence of compatibilizer on the properties of low-density polyethylene/polyamide 6 blends obtained by mechanical recycling of multilayer film waste. Waste Manage. Res.2018, 36, 729–736.CrossRefGoogle Scholar
  5. 5.
    Drake, W. O. The influence of sampleholders on oven aging of polypropylene. J. Polym. Sci.: Polym. Symposium1976, 57, 153–159.Google Scholar
  6. 6.
    Colwell, J. M.; Nikolic, M. A. L.; Bottle, S. E.; George, G. A. Sensitive luminescence techniques to study the early stages of polymer oxidation. Polym. Degrad. Stab.2013, 98, 2436–2444.CrossRefGoogle Scholar
  7. 7.
    Curran, K.; Možir, A.; Underhill, M.; Gibson, L. T.; Fearn, T.; Strlič, M. Cross-infection effect of polymers of historic and heritage significance on the degradation of a cellulose reference test material. Polym. Degrad. Stab.2014, 107, 294–306.CrossRefGoogle Scholar
  8. 8.
    Aratani, N.; Katada, I.; Nakayama, K.; Terano, M.; Taniike, T. Development of high-throughput chemiluminescence imaging instrument for parallel evaluation of polymer lifetime. Polym. Degrad. Stab.2015, 121, 340–347.CrossRefGoogle Scholar
  9. 9.
    Celina, M.; George, G. A. Physical spreading of oxidation in solid polypropylene as studied by chemiluminescence. Polym. Degrad. Stab.1993, 42, 335–344.CrossRefGoogle Scholar
  10. 10.
    Ahlblad, G.; Reitberger, T.; Terselius, B.; Stenberg, B. Imaging chemiluminescence technique applied to thermo-oxidation of polymers—Possibilities and limitations. Angew. Makromol. Chem.1998, 261/262(Nr. 4611), 1–7.CrossRefGoogle Scholar
  11. 11.
    Ahlblad, G.; Reitberger, T.; Terselius, B.; Stenberg, B. Thermo-oxidative infection in populations of EPDM particles studied by imaging chemiluminescence. Polym. Degrad. Stab.1999, 65, 169–177.CrossRefGoogle Scholar
  12. 12.
    Celina, M.; Clough, R.; Jones, G. Polymer degradation initiated via infectious behavior. Polymer2005, 46, 5161–5164.CrossRefGoogle Scholar
  13. 13.
    Celina, M.; Clough, R. L.; Jones, G. D. Initiation of polymer degradation via transfer of infectious species. Polym. Degrad. Stab.2006, 91, 1036–1044.CrossRefGoogle Scholar
  14. 14.
    Liu, X.; Yang, R. Cross-infection in thermo-oxidation of polymers. Polym. Degrad. Stab.2019, 161, 7–12.CrossRefGoogle Scholar
  15. 15.
    Mistretta, M. C.; Botta, L.; Vinci, A. D.; Ceraulo, M.; La Mantia, F. P. Photo-oxidation of polypropylene/graphene nanoplatelets composites. Polym. Degrad. Stab.2019, 160, 35–43.CrossRefGoogle Scholar
  16. 16.
    Briassoulis, D.; Hiskakis, M.; Tserotas, P. Combined effect of UVA radiation and agrochemicals on the durability of agricultural multilayer films. Polym. Degrad. Stab.2018, 154, 261–275.CrossRefGoogle Scholar
  17. 17.
    Nayanathara, U.; Kottegoda, N.; Perera, I. C.; Mudiyanselage, T. K. Synthesis, photodegradable and antibacterial properties of polystyrene-cinnamaldehyde copolymer film. Polym. Degrad. Stab.2018, 155, 195–207.CrossRefGoogle Scholar
  18. 18.
    Zhao, J. H.; Li, Y. F.; Yang, R.; Yu, J. Infectious behavior of polypropylene during photo-oxidation. Acta Polymerica Sinica (in Chinese)2015, 369–373.Google Scholar
  19. 19.
    Rabello, M. S.; White, J. R. The role of physical structure and morphology in the photodegradation behaviour of polypropylene. Polym. Degrad. Stab.1997, 56, 55–73.CrossRefGoogle Scholar
  20. 20.
    Guo, J. J.; Yan, H.; Bao, H. B.; Wang, X. M.; Hu, Z. D.; Yang, J. J. Attenuated total reflection infrared spectroscopy for degradation profile of high density polyethylene after weathering aging. Spectroscopy and Spectral Analysis (in Chinese)2015, 35, 1520–1524.Google Scholar
  21. 21.
    Yu, J. G.; Wang, X. D. Application of FTIR in study of thermooxidative degradation of PE/starch blends. Chinese Journal of Applied Chemistry (in Chinese)2001, 18, 48–51.Google Scholar
  22. 22.
    Vilaplana, F.; Ribes-Greus, A.; Karlsson, S. Degradation of recycled high-impact polystyrene simulation by reprocessing and thermooxidation. Polym. Degrad. Stab.2006, 91, 2163–2170.CrossRefGoogle Scholar
  23. 23.
    Arrieta, C.; Dong, Y. Y.; Lan, A.; Vu-Khanh, T. Outdoor weathering of polyamide and polyester ropes used in fall arrest equipment. J. Appl. Polym. Sci.2013, 130, 3058–3065.CrossRefGoogle Scholar
  24. 24.
    Guo, Y. F.; Tao, Y. J.; Ma, J.; Jie, G. X.; Zhang, X. D.; Hu, L. F.; Liu, X.; Wang, J. Study on the natural aging of polycarbonate by FTIR. Engineering plastics application (in Chinese)2012, 40, 77–80.Google Scholar
  25. 25.
    Pires, H. M.; Mendes, L. C.; Cestari, S. P.; Pita, V. J. R. R. Effect of weathering and accelerated photoaging on PET/PC (80/20 wt/wt%) melt extruded blend. Mater. Res.2015, 18, 763–768.CrossRefGoogle Scholar
  26. 26.
    Rånby, B.; Rabek, J. F. Photodegradation, photo-oxidation and photostabilization of polymers. John Wiley & Sons, London, 1975, p. 228, 232.Google Scholar
  27. 27.
    Zhao, J. H.; Yang, R.; Yu, J. Interfacial effect on photo-oxidation of PP via model blends. Polym. Degrad. Stab.2013, 98, 1981–1987.CrossRefGoogle Scholar
  28. 28.
    Fernando, S. S.; Christensen, P. A.; Egerton, T. A.; White, J. R. Carbon dioxide evolution and carbonyl group development during photodegradation of polyethylene and polypropylene. Polym. Degrad. Stab.2007, 92, 2163–2172.CrossRefGoogle Scholar
  29. 29.
    Bendjama, H.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M. Using photoactivated acetone for the degradation of Chlorazol Black in aqueous solutions: Impact of mineral and organic additives. Sci. Total Environ.2019, 653, 833–838.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations