Chinese Journal of Polymer Science

, Volume 38, Issue 3, pp 278–287 | Cite as

Chloromethylation and Quaternization of Poly(aryl ether ketone sulfone)s with Clustered Electron-rich Phenyl Groups for Anion Exchange Membranes

  • Lei Xiong
  • Yuan-Fang Hu
  • Zi-Gui Zheng
  • Zai-Lai XieEmail author
  • Dong-Yang ChenEmail author


Ion segregation is critically important for achieving high ion conductivity for anion exchange membranes (AEMs). Herein, a new bisphenol monomer bearing ten electron-rich phenyl groups was designed and polymerized with various amounts of electron-deficient 4,4′-dihydroxydiphenylsulfone and 4,4′-difluorobenzophenone to yield dense and selective reaction sites for chloromethylation and quaternization. As the most challenging step, chloromethylation was optimized by tuning the reaction temperature, reaction time, and reactant ratios. Ion exchange capacity, water uptake, anion conductivity, mechanical stability, and alkaline stability of the resulting AEMs were characterized in detail. It is found that chloromethylation reaction needed to be carried out at low equivalent of chloromethylation agents to avoid undesirable crosslinking. The QA-PAEKS-20 sample with an IEC of 1.19 mmol·g−1 exhibited a Cl conductivity of 11.2 mS·cm−1 and a water uptake of 30.2% at 80 °C, which are promising for AEM applications.


Anion exchange membrane Chloromethylation Poly(aryl ether) Ion-segregation Anion conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51873037 and 51503038).


  1. 1.
    Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy2011, 88, 981–1007.Google Scholar
  2. 2.
    Shin, D. W.; Guiver, M. D.; Lee, Y. M. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability. Chem. Rev.2017, 117, 4759–4805.PubMedGoogle Scholar
  3. 3.
    Scofield, M. E.; Liu, H. Q.; Wong, S. S. A concise guide to sustainable PEMFCs: Recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev.2015, 44, 5836–5860.PubMedGoogle Scholar
  4. 4.
    Mauritz, K. A.; Moore, R. B. State of understanding of Nafion. Chem. Rev.2004, 104, 4535–4585.PubMedGoogle Scholar
  5. 5.
    Elabd, Y. A.; Hickner, M. A. Block copolymers for fuel cells. Macromolecules2011, 44, 1–11.Google Scholar
  6. 6.
    Xu, T. Ion exchange membranes: State of their development and perspective. J. Membr. Sci.2005, 263, 1–29.Google Scholar
  7. 7.
    Kreuer, K. D. Ion conducting membranes for fuel cells and other electrochemical devices. Chem. Mater.2014, 26, 361–380.Google Scholar
  8. 8.
    Wang, Y. J.; Qiao, J. L.; Baker, R.; Zhang, J. J. Alkaline polymer electrolyte membranes for fuel cell applications. Chem. Soc. Rev.2013, 42, 5768–5787.PubMedGoogle Scholar
  9. 9.
    Olson, T. S.; Pylypenko, S.; Atanassov, P.; Asazawa, K.; Yamada, K.; Tanaka, H. Anion-exchange membrane fuel cells: Dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt-polypyrrole electrocatalysts. J. Phys. Chem. C2010, 114, 5049–5059.Google Scholar
  10. 10.
    Sanabriachinchilla, J.; Asazawa, K.; Sakamoto, T.; Yamada, K.; Tanaka, H.; Strasser, P. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways. J. Am. Chem. Soc.2011, 133, 5425–5431.Google Scholar
  11. 11.
    Pan, J.; Chen, C.; Zhuang, L.; Lu, J. T. Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc. Chem. Res.2012, 45, 471–483.Google Scholar
  12. 12.
    Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev.2018, 47, 7628–7658.PubMedGoogle Scholar
  13. 13.
    Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K.; Xu, T. W.; Zhuang, L. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci.2014, 7, 3135–3191.Google Scholar
  14. 14.
    Wu, X.; Scott, K. A non-precious metal bifunctional oxygen electrode for alkaline anion exchange membrane cells. J. Power Sources2012, 206, 14–19.Google Scholar
  15. 15.
    Li, N. W.; Yan, T. Z.; Li, Z.; Thurn-Albrecht, T.; Binder, W. H. Combshaped polymers to enhance hydroxide transport in anion exchange membranes. Energy Environ. Sci.2012, 5, 7888–7892.Google Scholar
  16. 16.
    Lin, C. X.; Zhuo, Y. Z.; Lai, A. N.; Zhang, Q. G.; Zhu, A. M.; Ye, M. L.; Liu, Q. L. Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene oxide) for fuel cells. J. Membr. Sci.2016, 513, 206–216.Google Scholar
  17. 17.
    Hibbs, M. R.; Fujimoto, C. H.; Cornelius, C. J. Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules2015, 42, 8316–8321.Google Scholar
  18. 18.
    Wang, G. G.; Weng, Y. M.; Chu, D.; Xie, D.; Chen, R. R. Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications. J. Membr. Sci.2009, 326, 4–8.Google Scholar
  19. 19.
    Varcoe, J. R.; Slade, R. C. T.; Yee, E. L. H. An alkaline polymer electrochemical interface: A breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem. Commun.2006, 3, 1428–1429.Google Scholar
  20. 20.
    Weiber, A.; Meis, D.; Jannasch, P. Anion conducting multiblock poly(arylene ether sulfone)s containing hydrophilic segments densely functionalized with quaternary ammonium groups. Polym. Chem.2015, 6, 1986–1996.Google Scholar
  21. 21.
    Wang, C. Y.; Shen, B.; Xu, C.; Zhao, X. Y.; Li, J. Side-chain-type poly(arylene ether sulfone)s containing multiple quaternary ammonium groups as anion exchange membranes. J. Membr. Sci.2015, 492, 281–288.Google Scholar
  22. 22.
    Robertson, N. J.; Kostalik IV, H. A.; Clark, T. J.; Mutolo, P. F.; Abruña, H. D.; Coates, G. W. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. J. Am. Chem. Soc.2010, 132, 3400–3404.PubMedGoogle Scholar
  23. 23.
    Chen, Y.; Lin, Q. L.; Zheng, Y. Y.; Yu, Y.; Chen, D. Y. Densely quaternized anion exchange membranes synthesized from Ullmann coupling extension of ionic segments for vanadium redox flow batteries. Sci. China Mater.2019, 62, 211–224.Google Scholar
  24. 24.
    Tsai, T. H.; Maes, A. M.; Vandiver, M. A.; Versek, C.; Seifert, S.; Tuominen, M.; Liberatore, M. W.; Herring, A. M.; Coughlin, E. B. Synthesis and structure-conductivity relationship of polystyreneblock- poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells. J. Polym. Sci. Part B: Polym. Phys., 2013, 51, 1751–1760.Google Scholar
  25. 25.
    Kim, D. J.; Lee, B. N.; Sang, Y. N. Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell. Int. J. Hydrogen Energy2017, 42, 23759–23767.Google Scholar
  26. 26.
    Lin, B. C.; Qiu, L. H.; Qiu, B.; Peng, Y.; Yan, F. A soluble and conductive polyfluorene ionomer with pendant imidazolium groups for alkaline fuel cell applications. Macromolecules2011, 44, 9642–9649.Google Scholar
  27. 27.
    Gu, F. L.; Dong, H. L.; Li, Y. Y.; Sun, Z.; Yan, F. Base stable pyrrolidinium cations for alkaline anion exchange membrane applications. Macromolecules2014, 47, 6740–6747.Google Scholar
  28. 28.
    Wang, J. H.; Li, S. H.; Zhang, S. B. Novel Hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules2010, 43, 3890–3896.Google Scholar
  29. 29.
    Gu, S.; Cai, R.; Yan, Y. S. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chem. Commun.2011, 47, 2856–2858.Google Scholar
  30. 30.
    Stokes, K. K.; Orlicki, J. A.; Beyer, F. L. RAFT polymerization and thermal behavior of trimethylphosphonium polystyrenes for anion exchange membranes. Polym. Chem.2011, 2, 80–82.Google Scholar
  31. 31.
    Chen, D. Y.; Hickner, M. A. Ion clustering in quaternary ammonium functionalized benzylmethyl containing poly(arylene ether ketone)s. Macromolecules2013, 46, 9270–9278.Google Scholar
  32. 32.
    Zhao, Z.; Wang, J. H.; Li, S. H.; Zhang, S. B. Synthesis of multi-block poly(arylene ether sulfone) copolymer membrane with pendant quaternary ammonium groups for alkaline fuel cell. J. Power Sources2011, 196, 4445–4450.Google Scholar
  33. 33.
    Shen, K. Z.; Zhang, Z. P.; Zhang, H. B.; Pang, J. H.; Jiang, Z. H. Poly(arylene ether ketone) carrying hyperquaternized pendants: Preparation, stability and conductivity. J. Power Sources2015, 287, 439–447.Google Scholar
  34. 34.
    Chen, Y.; Liu, Z. C.; Lin, M. J.; Li, Q. L.; Tong, B. H.; Chen, D. Y. Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries. Sci. China Chem.2019, 62, 479–490.Google Scholar
  35. 35.
    Yan, J. L.; Zhu, L.; Chaloux, B. L.; Hickner, M. A. Anion exchange membranes by bromination of tetramethyl biphenol-based poly(sulfone)s. Polym. Chem.2017, 8, 2442–2449.Google Scholar
  36. 37.
    Tanaka, M.; Koike, M.; Miyatake, K.; Watanabe, M. Anion conductive aromatic ionomers containing fluorenyl groups. Macromolecules2012, 43, 2657–2659.Google Scholar
  37. 38.
    Hu, Y. F.; Wang, B. X.; Li, X.; Chen, D. Y.; Zhang, W. Y. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes. J. Power Sources2018, 387, 33–42.Google Scholar
  38. 39.
    Fujimoto, C. H.; Hickner, M. A.; Cornelius, C. J.; Loy, D. A. Ionomeric poly(phenylene) prepared by Diels-Alder polymerization: Synthesis and physical properties of a novel polyelectrolyte. Macromolecules2005, 38, 5010–5016.Google Scholar
  39. 40.
    Chen, D. Y.; Hickner, M. A.; Agar, E.; Kumbur, E. C. Optimized anion exchange membranes for vanadium redox flow batteries. ACS Appl. Mater. Interfaces2013, 5, 7559–7566.PubMedGoogle Scholar
  40. 41.
    Wright, M. E.; Toplikar, E. G.; Svejda, S. A. Details concerning the chloromethylation of soluble high-molecular-weight polystyrene using dimethoxymethane, thionyl chloride, and a Lewis acid: A full analysis. Macromolecules1991, 24, 5879–5880.Google Scholar
  41. 42.
    Sata, T. Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis e effect of hydrophilicity of anion exchange membranes on permselectivity of anions. J. Membr. Sci.2000, 167, 1–31.Google Scholar
  42. 43.
    Amel, A.; Gavish, N.; Zhu, L.; Dekel, D. R.; Hickner, M. A.; Ein-Eli, Y. Bicarbonate and chloride anion transport in anion exchange membranes. J. Membr. Sci.2016, 514, 125–134.Google Scholar
  43. 44.
    Li, X.; Liu, Q.; Yu, Y.; Meng, Y. Quaternized poly(arylene ether) ionomers containing triphenyl methane groups for alkaline anion exchange membranes. J. Mater. Chem. A2013, 1, 4324–4335.Google Scholar
  44. 45.
    Gopi, K. H.; Peera, S. G.; Bhat, S. D.; Sridhar, P.; Pitchumani, S. Preparation and characterization of quaternary ammonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) as anion exchange membrane for alkaline polymer electrolyte fuel cells. Int. J. Hydrogen Energy2014, 39, 2659–2668.Google Scholar
  45. 46.
    Zhang, J. J.; He, Y. B.; Liang, X.; Ge, X. L.; Zhu, Y.; Hu, M.; Yang, Z. J.; Wu, L.; Xu, T. W. Towards the gemini cation anion exchange membranes by nucleophilic substitution reaction. Sci. China Mater.2019, 62, 973–981.Google Scholar
  46. 47.
    Gandomi, Y. A.; Aaron, D. S.; Mench, M. M. Coupled membrane transport parameters for ionic species in all-vanadium redox flow batteries. Electrochim. Acta2016, 218, 174–190.Google Scholar
  47. 48.
    Liu, J. F.; Yan, X. M.; Gao, L.; Hu, L.; Wu, X. M.; Dai, Y.; Ruan, X. H.; He, G. H. Long-branched and densely functionalized anion exchange membranes for fuel cells. J. Membr. Sci.2019, 581, 82–92.Google Scholar
  48. 49.
    Arges, C. G.; Ramani, V. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfonebased anion exchange membranes. PNAS2013, 110, 2490–2495.PubMedGoogle Scholar
  49. 50.
    Xiao, L.; Zhang, S.; Pan, J.; Yang, C. X.; He, M. L.; Zhuang, L.; Lu, J. T. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ. Sci.2012, 5, 7869–7871.Google Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringFuzhou UniversityFuzhouChina
  2. 2.College of ChemistryFuzhou UniversityFuzhouChina

Personalised recommendations