Chinese Journal of Polymer Science

, Volume 38, Issue 3, pp 213–219 | Cite as

A Facile Strategy for Non-fluorinated Intrinsic Low-k and Low-loss Dielectric Polymers: Valid Exploitation of Secondary Relaxation Behaviors

  • Chao Qian
  • Zhen-Guo Fan
  • Wei-Wen Zheng
  • Run-Xin Bei
  • Tian-Wen Zhu
  • Si-Wei Liu
  • Zhen-Guo Chi
  • Matthew P. Aldred
  • Xu-Dong Chen
  • Yi ZhangEmail author
  • Jia-Rui Xu


High-performance low-k and low-loss circuit materials are urgently needed in the field of microelectronics due to the upcoming Fifth-Generation Mobile Communications Technology (5G Technology). Herein, a facile design strategy for non-fluorinated intrinsic low-k and low-loss polyimides is reported by fully considering the secondary relaxation behaviors of the polymer chains. A new amorphous non-fluorinated polymer (TmBPPA) with a k value of 2.23 and a loss tangent lower than 3.94 × 10−3 at 104 Hz has been designed and synthesized, which to the best of our knowledge is the lowest value amongst the non-fluorinated and non-porous polymers reported in literature. Meanwhile, TmBPPA exhibits excellent overall properties, such as excellent thermostability, good mechanical properties, low moisture absorption, and high bonding strength. As high-performance flexible circuit materials, all these characteristics are highly expected to meet the present and future demands for high density, high speed, and high frequency electronic circuit used in 5G wireless networks.


Low-k Free volume Secondary relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was finincially supported by the National Natural Science Foundation of China (Nos. 51373204 and 51873239), the National 973 Program of China (No. 2014CB643605), the Science and Technology Project of Guangdong Province (Nos. 2015B090915003 and 2015B090913003), the Leading Scientific, Technical and Innovation Talents of Guangdong Special Support Program (No. 2016TX03C295), the China Postdoctoral Science Foundation (No. 2017M612801), and the Fundamental Research Funds of Sun Yat-sen University.

Supplementary material

10118_2020_2339_MOESM1_ESM.pdf (781 kb)
A Facile Strategy for Non-fluorinated Intrinsic Low-k and Low-loss Dielectric Polymers: Valid Exploitation of Secondary Relaxation Behaviors


  1. 1.
    Volksen, W.; Miller, R. D.; Dubois, G. Low dielectric constant materials. Chem. Rev., 2010, 110, 56–110.CrossRefGoogle Scholar
  2. 2.
    Maier, G. Low dielectric constant polymers for microeletronics. Prog. Polym. Sci., 2001, 26, 3–65.CrossRefGoogle Scholar
  3. 3.
    Miller, R. D. In search of low-k dielectrics. Science, 1999, 286, 421–423.CrossRefGoogle Scholar
  4. 4.
    Hecht, J. The bandwidth bottleneck that is throttling the internet. Nature News, 2016, 536, 139–142.CrossRefGoogle Scholar
  5. 5.
    Andrews, J. G.; Stefano, B.; Wan, C.; Stephen, V. H.; Angel, L.; Anthony, C. K. S.; Zhang, J. C. What will 5G be? IEEE Journal on Selected Areas in Communications2014, 32, 1065–1082.CrossRefGoogle Scholar
  6. 6.
    Shamiryan, D.; Abell, T.; Iacopi, F.; Maex, K. Low-k dielectric materials. Mater. Today, 2004, 7, 34–39.CrossRefGoogle Scholar
  7. 7.
    Morgen, E. M.; Ryan, T.; Zhao, J. Hua.; Hu, C.; Cho, T.; Ho, P. S. Low dielectric constant materials for ULSI interconnects. Annu. Rev. Mater. Sci., 2000, 30, 645–680.CrossRefGoogle Scholar
  8. 8.
    Kohl, P. A. Low-dielectric constant insulators for future integrated circuits and packages. Annu. Rev. Chem. Biomol. Eng., 2011, 2, 379–401.CrossRefGoogle Scholar
  9. 9.
    Zhang, G. X.; Tkatchenko, A.; Paier, J.; Appel, H.; Scheffler, M. Van der Waals interactions in ionic and semiconductor solids. Phy. Rev. Lett., 2011, 107, 245501.CrossRefGoogle Scholar
  10. 10.
    Krause, B.; Diekmann, K.; van der Vegt, N. F. A.; Wessling, M. Open nanoporous morphologies from polymeric blends by carbon dioxide foaming. Macromolecules, 2002, 35, 1738–1745.CrossRefGoogle Scholar
  11. 11.
    Krause, B.; Koops, G. H.; van der Vegt, N. F. A.; Wessling, M.; Wubbenhorst, M.; van Turnhout, J. Ultralow-k dielectrics made by supercritical foaming of thin polymer films. Adv. Mater., 2002, 14, 1041–1046.CrossRefGoogle Scholar
  12. 12.
    Long, T. M.; Swager, T. M. Molecular design of free volume as a route to low-k dielectric materials. J. Am. Chem. Soc., 2003, 125, 14113–14119.CrossRefGoogle Scholar
  13. 13.
    Eslava, S.; Urrutia, J.; Busawon, A. N.; Baklanov, M. R.; Lacopi, F.; Aldea, S.; Maex, K.; Martens, J. A.; Kirschhock, C. E. A. Zeolite-inspired low-k dielectrics overcoming limitations of zeolite films. J. Am. Chem. Soc., 2008, 130, 17528–17536.CrossRefGoogle Scholar
  14. 14.
    Ro, H. W.; Char, K.; Jeon, E.; Kim, H. J.; Kwon, D.; Lee, H. J.; Lee, J. K.; Rhee, H. W.; Soles, C.; Yoon, D. Y. High-modulus spin-on organosilicate glasses for nanoporous applications. Adv. Mater., 2007, 19, 705–710.CrossRefGoogle Scholar
  15. 15.
    Connor, E. F.; Sundberg, L. K.; Kim, H. C.; Cornelissen, J. J.; Magbitang, T.; Rice, P. M.; Lee, V. Y.; Hawker, C. J.; Volksen, W.; Hedrick, J. L.; Miller, R. D. Templating of silsesquioxane cross-linking using unimolecular self-organizing polymers. Angew. Chem. Int. Ed., 2003, 115, 3915–3918.CrossRefGoogle Scholar
  16. 16.
    Lee, Y. K.; Murarka, S. P.; Jeng, S. P.; Auman, B. Investigations of the low dielectric constant fluorinated polyimide for use as the interlayer dielectric in ULSI. Materials Research Society Symposium Proceedings, 1995, 381, 31–43.CrossRefGoogle Scholar
  17. 17.
    Lee, Y. K.; Murarka, S. P.; Auman, B. Thermal curing conditions for low k-fluorinated polyimide film for use as the interlayer dielectric in ULSI. Materials Research Society Symposium Proceedings, 1996, 443, 71–77.CrossRefGoogle Scholar
  18. 18.
    Dubois, G.; Volksen, W.; Magbitang, T.; Miller, R. D.; Gage, D. M.; Dauskardt, R. H. Molecular network reinforcement of sol-gel glasses. Adv. Mater., 2007, 19, 3989–3994.CrossRefGoogle Scholar
  19. 19.
    Mary, A. B. M.; Wright, S.; Sandberg, A.; Nguyen, B. N.; Van Keuls, F. W.; Mueller, C. H.; Rodríguez-Solís, R.; Miranda, F. A. Low dielectric polyimide aerogels as substrates for lightweight patch antennas. ACS Appl. Mater. Interfaces, 2012, 4, 6346–6353.CrossRefGoogle Scholar
  20. 20.
    Liu, Y.; Zhang, Y.; Lan, Q.; Liu, S.; Qin, Z.; Chen, L.; Zhao, C.; Chi, Z.; Xu, J.; Economy, J. High-performance functional polyimides containing rigid nonplanar conjugated triphenylethylene moieties. Chem. Mater., 2012, 24, 1212–1222.CrossRefGoogle Scholar
  21. 21.
    Liu, Y.; Qian, C.; Qu, L.; Wu, Y.; Zhang, Y.; Wu, X.; Zou, B.; Chen, W.; Chen, Z.; Chi, Z.; Liu, S.; Chen, X.; Xu, J. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem. Mater., 2015, 27, 6543–6549.CrossRefGoogle Scholar
  22. 22.
    Taki, K.; Hosokawa, K.; Takagi, S.; Mabuchi, H.; Ohshima M. Rapid production of ultralow dielectric constant porous polyimide films via CO—fetf-amine zwitterion-induced phase separation and subsequent photopolymerization. Macromolecules, 2013, 46, 2275–2281.CrossRefGoogle Scholar
  23. 23.
    Chen, Y.; Wang, W.; Yu, W.; Yuan, Z.; Kang, E. T.; Neoh, K. G.; Krauter, B.; Greiner, A.. Nanoporous low-k polyimide films via poly(amic acid)s with grafted poly(ethylene glycol) side chains from a reversible addition-fragmentation chain-transfer-mediated process. Adv. Funct. Mater., 2004, 14, 471–478.CrossRefGoogle Scholar
  24. 24.
    Kawagishi, K.; Saito, H.; Furukawa, H.; Horie, K.. Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol. Rapid Commun., 2007, 28, 96–100.CrossRefGoogle Scholar
  25. 25.
    Zhang, Y. H.; Lu, S. G.; Li, Y. Q.; Dang, Z. M.; Xin, J. H.; Fu, S. Y.; Li, G. T.; Guo, R. R.; Li, L. F. Novel silica tube/polyimide composite films with variable low dielectric constant. Adv. Mater., 2005, 17, 1056–1059.CrossRefGoogle Scholar
  26. 26.
    Liao, W. H.; Yang, S. Y.; Hsiao, S. T.; Wang, Y. S.; Li, S. M.; Ma, C. C. M.; Tien, H. W.; Zeng, S. J. Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites. ACS Appl. Mater. Interfaces, 2014, 6, 15802–15812.CrossRefGoogle Scholar
  27. 27.
    Lew, C. M.; Li, Z. J.; Shuang, L.; Hwang, S. J.; Liu, Y.; Medina, I. D.; Sun, M. W.; Wang, J. L.; Davis, M. E.; Yan, Y. S. Pure-silica-zeolite MFI and MEL low-dielectric-constant films with fluoro-organic functionalization. Adv. Funct. Mater., 2008, 18, 3454–3460.CrossRefGoogle Scholar
  28. 28.
    Yuan, C.; Jin, K.; Li, K.; Diao, S.; Tong, J.; Fang, Q. Non-porous low-k dielectric films based on a new structural amorphous fluoropolymer. Adv. Mater., 2013, 25, 4875–4878.CrossRefGoogle Scholar
  29. 29.
    Yang, J.; Liu, S.; Zhu, F.; Huang, Y.; Li, B.; Zhang, L. New polymers derived from 4-vinylsilylbenzocyclobutene monomer with good thermal stability, excellent film-forming property, and low-dielectric constant. J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 381–391.CrossRefGoogle Scholar
  30. 30.
    Zhao, X. Y.; Liu, H. J. Review of polymer materials with low dielectric constant. Polym. Int., 2010, 59, 597–606.Google Scholar
  31. 31.
    Chern, Y. T.; Shiue, H. C. Low dielectric constants of soluble polyimides based on adamantane. Macromolecules, 1997, 30, 4646–4651.CrossRefGoogle Scholar
  32. 32.
    Wang, J.; Zhou, J.; Jin, K.; Wang, L.; Sun, J.; Fang Q. A new fluorinated polysiloxane with good optical properties and low dielectric constant at high frequency based on easily available tetraethoxysilane (TEOS). Macromolecules, 2017, 50, 9394–9402.CrossRefGoogle Scholar
  33. 33.
    Zhang, K.; Han, L.; Froimowicz, P.; Ishida, H. A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: Precursor for low temperature formation of very high performance polybenzoxazole with low dielectric constant and high thermal stability. Macromolecules, 2017, 50, 6552–6560.CrossRefGoogle Scholar
  34. 34.
    Chern, Y. T.; Shiue, H. C. High subglass transition temperatures and low dielectric constants of polyimides derived from 4,9-bis(4-aminophenyl) diamantine. Chem. Mater., 1998, 10, 210–216.CrossRefGoogle Scholar
  35. 35.
    Johari, G. P.; Goldstein, M. Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys., 1970, 53, 2372–2388.CrossRefGoogle Scholar
  36. 36.
    Jho, J. Y.; Yee, A. F. Secondary relaxation motion in bisphenol a polycarbonate. Macromolecules, 1991, 24, 1905–1913.CrossRefGoogle Scholar
  37. 37.
    Wimberger-Friedl, R.; Schoo, H. F. M. On the secondary relaxation of substituted bis-A polycarbonates. Macromolecules, 1996, 29, 8871–8874.CrossRefGoogle Scholar
  38. 38.
    Ngai, K. L.; Beiner, M. Secondary relaxation of the Johari-Goldstein kind in alkyl nanodomains. Macromolecules, 2004, 3721, 8123–8127.CrossRefGoogle Scholar
  39. 39.
    Coburn, J. C.; Soper, P. D.; Auman, B. C. Relaxation behavior of polyimides based on 2,2′-disubstituted benzidines. Macromolecules, 1995, 28, 3253–3260.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chao Qian
    • 1
  • Zhen-Guo Fan
    • 1
  • Wei-Wen Zheng
    • 1
  • Run-Xin Bei
    • 1
  • Tian-Wen Zhu
    • 1
  • Si-Wei Liu
    • 1
  • Zhen-Guo Chi
    • 1
  • Matthew P. Aldred
    • 1
  • Xu-Dong Chen
    • 1
  • Yi Zhang
    • 1
    Email author
  • Jia-Rui Xu
    • 1
  1. 1.PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of ChemistrySun Yat-sen UniversityGuangzhouChina

Personalised recommendations