Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods

  • Si-Qi Teng
  • Zhi-Guo JiangEmail author
  • Zhao-Bin QiuEmail author


Two octaisobutyl-polyhedral oligomeric silsesquioxanes (oib-POSS) reinforced biodegradable poly(ε-caprolactone) (PCL) composites were prepared via two different methods, i.e., melt compounding and solution casting, which were named as mPCL/oib-POSS and sPCL/oib-POSS, respectively, in this work. Oib-POSS dispersed finely in both composites; moreover, oib-POSS aggregates were larger in mPCL/oib-POSS than in sPCL/oib-POSS. Despite the different preparation methods, oib-POSS obviously promoted the crystallization of PCL, especially in sPCL/oib-POSS, but did not modify the crystal structure of PCL. The storage moduli of PCL were improved significantly in both composites. PCL/oib-POSS composites with enhanced crystallization behavior and improved dynamic mechanical properties were successfully prepared through both methods; moreover, the solution casting method was more effective than the melt compounding method.


Poly(ε-caprolactone) POSS Crystallization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Part of this research was financially supported by the National Natural Science Foundation of China (Nos. 51373020 and 51573016).

Supplementary material

10118_2020_2338_MOESM1_ESM.pdf (269 kb)
Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods


  1. 1.
    Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci., 2010, 35, 1217–1256.CrossRefGoogle Scholar
  2. 2.
    Dash, T. K.; Konkimalla, V. B. Poly-ɛ-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release, 2012, 158, 15–33.CrossRefGoogle Scholar
  3. 3.
    Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003, 24, 2077–2082.CrossRefGoogle Scholar
  4. 4.
    Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B, 2010, 75, 1–18.CrossRefGoogle Scholar
  5. 5.
    Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 2004, 24, 801–808.CrossRefGoogle Scholar
  6. 6.
    Sun, H. F.; Mei, L.; Song, C. X.; Cui, X. M.; Wang, P. Y. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials, 2006, 27, 1735–1740.CrossRefGoogle Scholar
  7. 7.
    Ahmed, J.; Luciano, G.; Schizzi, I.; Arfat, Y. A.; Maggiore, S.; Thai, T. L. A. Non-isothermal crystallization behavior, rheological properties and morphology of poly(ɛ-caprolactone)/graphene oxide nanosheets composite films. Thermochim. Acta, 2018, 659, 96–104.CrossRefGoogle Scholar
  8. 8.
    Benhacine, F.; Hadj-Hamou, A. S.; Habi, A. Development of longterm antimicrobial poly(ɛ-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use. Polym. Bull., 2016, 73, 1207–1227.CrossRefGoogle Scholar
  9. 9.
    Deng, S.; Ma, J. R.; Guo, Y. L.; Chen, F.; Fu, Q. One-step modification and nanofibrillation of microfibrillated cellulose for simultaneously reinforcing and toughening of poly(ɛ-caprolactone). Compos. Sci. Technol., 2018, 157, 168–177.CrossRefGoogle Scholar
  10. 10.
    Fadaie, M.; Mirzaei, E.; Geramizadeh, B.; Asvar, Z. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohyd. Polym., 2018, 199, 628–640.CrossRefGoogle Scholar
  11. 11.
    Gumede, T. P.; Luyt, A. S.; Hassan, M. K.; Perez-Camargo, R. A.; Tercjak, A.; Muller, A. J. Morphology, nucleation, and isothermal crystallization kinetics of poly(ɛ-caprolactone) mixed with a polycarbonate/MWCNTs masterbatch. Polymers, 2017, 9, 709–734.CrossRefGoogle Scholar
  12. 12.
    Kong, J.; Yu, Y.; Pei, X.; Han, C.; Tan, Y.; Dong, L. Polycaprolactone nanocomposite reinforced by bioresource starch-based nanoparticles. Int. J. Biol. Macromol., 2017, 102, 1304–1311.CrossRefGoogle Scholar
  13. 13.
    Saeed, K.; Park, S. Y.; Lee, H. J.; Baek, J. B.; Huh, W. S. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer, 2006, 47, 8019–8025.CrossRefGoogle Scholar
  14. 14.
    Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev., 2010, 110, 2081–2173.CrossRefGoogle Scholar
  15. 15.
    Phillips, S.; Haddad, T.; Tomczak, S. Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr. Opin. Solid State Mater. Sci., 2004, 8, 21–29.CrossRefGoogle Scholar
  16. 16.
    Kuo, S. W.; Chang, F. C. POSS related polymer nanocomposites. Prog. Polym. Sci., 2011, 36, 1649–1696.CrossRefGoogle Scholar
  17. 17.
    Wu, J.; Mather, P. T. POSS polymers: Physical properties and biomaterials applications. Polym. Rev., 2009, 49, 25–63.CrossRefGoogle Scholar
  18. 18.
    Guan, W.; Qiu, Z. B. Isothermal crystallization kinetics, morphology, and dynamic mechanical properties of biodegradable poly(ɛ-caprolactone) and octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind. Eng. Chem. Res., 2012, 51, 3203–3208.CrossRefGoogle Scholar
  19. 19.
    Pan, H.; Yu, J.; Qiu, Z. B. Crystallization and morphology studies of biodegradable poly(ɛ-caprolactone)/polyhedral oligomeric silsesquioxanes nanocomposites. Polym. Eng. Sci., 2011, 51, 2159–2165.CrossRefGoogle Scholar
  20. 20.
    Liu, W.; He, S.; Zhou, H. Effect of octa(epoxycyclohexyl) POSS on thermal, rheology property, and foaming behavior of PLA composites. J. Appl. Polym. Sci., 2018, 135, 46399.CrossRefGoogle Scholar
  21. 21.
    Yu, J.; Qiu, Z. B. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl. Mater. Interfaces, 2011, 3, 890–897.CrossRefGoogle Scholar
  22. 22.
    Choi, J. H.; Jung, C. H.; Kang, D. W.; Hwang, I. T.; Choi, J. H. Preparation and characterization of crosslinked poly(ɛ-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites by electron beam irradiation. Nucl. Instrum. Meth. B, 2012, 287, 141–147.CrossRefGoogle Scholar
  23. 23.
    Teng, S. Q.; Jiang, Z. G.; Qiu, Z. B. Effect of different POSS structures on the crystallization behavior and dynamic mechanical properties of biodegradable poly(ethylene succinate). Polymer, 2019, 163, 68–73.CrossRefGoogle Scholar
  24. 24.
    Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys., 1940, 8, 212–224.Google Scholar
  25. 25.
    Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys., 1941, 9, 177–184.CrossRefGoogle Scholar
  26. 26.
    Wunderlich, B. Macromolecular physics, Vol. 2, Academic Press, New York, 1976.Google Scholar
  27. 27.
    Bassindale, A. R.; Liu, Z.H.; MacKinnon, I. A.; Taylor, P. G.; Yang, Y. X.; Light, M. E.; Horton, P. N.; Hursthouse, M. B. A higher yielding route for T8 silsesquioxane cages and X-ray crystal structures of some novel spherosilicates. Dalton Trans., 2003, 14, 2945–2949.CrossRefGoogle Scholar
  28. 28.
    Eastmond, G. Poly(ɛ-caprolactone) blends. Adv. Polym. Sci., 1999, 149, 59–223.CrossRefGoogle Scholar
  29. 29.
    Chen, B. Q.; Sun, K. Poly(ɛ-caprolactone)/hydroxyapatite composites: Effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym. Test., 2005, 24, 64–70.CrossRefGoogle Scholar
  30. 30.
    Chen, B. Q.; Sun, K.; Ren, T. Mechanical and viscoelastic properties of chitin fiber reinforced poly(ɛ-caprolactone). Eur. Polym. J., 2005, 41, 453–457.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations