Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 12, pp 1183–1199 | Cite as

Structural Design and Application of Azo-based Supramolecular Polymer Systems

  • Hui-Tao Yu
  • Jun-Wen Tang
  • Yi-Yu Feng
  • Wei FengEmail author
Review
  • 37 Downloads

Abstract

This article presents a brief overview of recent advances in azo-containing supramolecular systems. In literature, it has been shown that azo supramolecular polymers and their composite materials exhibit fast and intelligent responses to various external stimuli, such as temperature, pH change, redox reagents, ligands, coupling reagents, etc. In applications, these systems are widely used for molecular motors, shape memory, liquid crystal, solar thermal energy storage, signal transmission, intelligent encryption, and other purposes. Furthermore, these systems can function as key components for device upgrade processing. However, the design and rules of azo supramolecular polymers are still not supported by an exact theory. Information about the relationship between the spatial structure and behavior is lacking, and new supramolecular materials cannot be designed by adding functional moieties to known azo polymers. Based on the current research status, this review mainly summarizes the structural design principles as well as structures and applications of known azo supramolecules; meanwhile, it highlights the emerging development fields, recent advances, and prospects in fabricating self-assembling intelligent supramolecular systems with azo supramolecular polymers as responsive units. The goal of this review is to bring new inspiration to researchers who want to optimize the chemical structure, steric conformation, electrostatic environment, and specific molecular functionalization.

Keywords

Azo Supramolecular Structures Application Prospect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Funds for Distinguished Young Scholars (No. 51425306), the National Outstanding Youth Talent Program (2019), the State Key Program of National Natural Science Foundation of China (No. 51633007), the National Natural Science Foundation of China (Nos. 51573125, 51573147, and 51803151), and Scientific and Technological Commission of China.

References

  1. 1.
    Lehn, J. M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. 1988, 27, 89–112.Google Scholar
  2. 2.
    Yagai, S.; Karatsu, T.; Kitamura, A. Photocontrollable self-assembly. Chem. Eur. J. 2005, 11, 4054–4063.PubMedGoogle Scholar
  3. 3.
    Cheng, M. J.; Zhang, Q.; Shi, F. Macroscopic supramolecular assembly and its applications. Chinese J. Polym. Sci. 2018, 36, 306–321.Google Scholar
  4. 4.
    Cao, C.; Li, Y.; Feng Y. Y.; Long, P.; An, H. R.; Qin, C. Q.; Han, J. K.; Li, S. W.; Feng, W. A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for highperformance lithium-ion batteries. J. Mater. Chem. A2017, 5, 22519–22526.Google Scholar
  5. 5.
    Archut, A.; Vögtle, F.; De Cola, L.; Azzellini, G. C.; Balzani, V.; Ramanujam, P. S.; Berg, R. H. Azobenzene functionalized cascade molecules: Photoswitchable supramolecular systems. Chem. Eur. J. 1998, 4, 699–706.Google Scholar
  6. 6.
    Fabbrizzi, L.; Poggi, A. Sensors and switches from supra-molecular chemistry. Chem. Soc. Rev. 1995, 24, 197–202.Google Scholar
  7. 7.
    Lehn, J. M. Supramolecular chemistry: Receptors, catalysts, and carriers. Science1985, 227, 849–856.PubMedGoogle Scholar
  8. 8.
    Chu, Z.; Han, Y.; Bian, T.; De, S.; Král, P.; Klajn, R. Supra-molecular control of azobenzene switching on nanoparticles. J. Am. Chem. Soc. 2018, 141, 1949–1960.Google Scholar
  9. 9.
    Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev.2014, 115, 7794–7839.PubMedGoogle Scholar
  10. 10.
    Mattia, E.; Otto, S. Supramolecular systems chemistry. Natt. Nanotech.2015, 10, 111.Google Scholar
  11. 11.
    Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Halogen bonding in supra-molecular chemistry. Chem. Rev.2015, 115, 7118–7195.PubMedGoogle Scholar
  12. 12.
    Lehn, J. M. Supramolecular chemistry: Where from? Where to? Chem. Soc. Rev.2017, 46, 2378–2379.PubMedGoogle Scholar
  13. 13.
    Delbianco, M.; Bharate, P.; Varela-Aramburu, S.; Seeberger, P. H. Carbohydrates in supramolecular chemistry. Chem. Rev.2015, 116, 1693–1752.PubMedGoogle Scholar
  14. 14.
    Zeng, F.; Zimmerman, S. C. Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly. Chem. Rev.1997, 97, 1681–1712.PubMedGoogle Scholar
  15. 15.
    Huang, F.; Scherman, O. A. Supramolecular polymers. Chem. Soc. Rev.2012, 41, 5879–5880.PubMedGoogle Scholar
  16. 16.
    Stupp, S. I.; Keser, M.; Tew, G. N. Functionalized supramolecular materials. Polymer1998, 39, 4505–4508.Google Scholar
  17. 17.
    Bernhardt, P. V. A supramolecular synthon for H-bonded transition metal arrays. Inorg. Chem.1999, 38, 3481–3483.PubMedGoogle Scholar
  18. 18.
    Liu, Z. F.; Hashimoto, K.; Fujishima, A. Photoelectrochemical information storage using an azobenzene derivative. Nature1990, 347, 658.Google Scholar
  19. 19.
    Freundlich, H.; Heller, W. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc.1939, 61, 2228–2230.Google Scholar
  20. 20.
    Kumar, S.; Dinesha, P.; Rosen, M. A. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy2019, 185, 1163–1173.Google Scholar
  21. 21.
    Hartley, G. S. The cis-form of azobenzene. Nature1937, 140, 281.Google Scholar
  22. 22.
    Gauglitz, G.; Hubig, S. Chemical actinometry in the UV by azobenzene in concentrated solution: A convenient method. J. Photochem1985, 30, 121–125.Google Scholar
  23. 23.
    Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed.2000, 99, 3348–3391.Google Scholar
  24. 24.
    Ueno, A.; Yoshimura, H.; Saka, R.; Osa, T. Photocontrol of binding ability of capped cyclodextrin. J. Am. Chem. Soc.1979, 101, 2779–2780.Google Scholar
  25. 25.
    Emoto, A.; Uchida, E.; Fukuda, T. Optical and physical applications of photocontrollable materials: Azobenzene-containing and liquid crystalline polymers. Polymers2012, 4, 150–186.Google Scholar
  26. 26.
    Tejedor, R. M.; Oriol, L.; Serrano, J. L.; Partal Ureña, F.; López González, J. J. Photoinduced chiral nematic organization in an achiral glassy nematic azopolymer. Adv. Funct. Mater.2007, 17, 3486–3492.Google Scholar
  27. 27.
    Priewisch, B.; Rück-Braun, K. Efficient preparation of nitrosoarenes for the synthesis of azobenzenes. J. Org. Chem.2005, 70, 2350–2352.PubMedGoogle Scholar
  28. 28.
    Feng, W.; Luo, W.; Feng, Y. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: Structures, properties and application. Nanoscale2012, 4, 6118–6134.PubMedGoogle Scholar
  29. 29.
    Beharry, A. A.; Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev.2011, 40, 4422–4437.PubMedGoogle Scholar
  30. 30.
    Goulet-Hanssens, A.; Barrett, C. J. Photo-control of biological systems with azobenzene polymers. J. Polym. Sci., Part A: Polym. Chem.2013, 51, 3058–3070.Google Scholar
  31. 31.
    Dong, R.; Liu, Y.; Zhou, Y.; Yan, D.; Zhu, X. Photo-reversible supramolecular hyperbranched polymer based on host-guest interactions. Polym. Chem.2011, 2, 2771–2774.Google Scholar
  32. 32.
    Qin, M.; Xu, Y.; Cao, R.; Feng, W.; Chen, L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater.2018, 28, 1805053.Google Scholar
  33. 33.
    Poutanen, M.; Ikkala, O.; Priimagi, A. Structurally controlled dynamics in azobenzene-based supramolecular self-assemblies in solid state. Macromolecules2016, 49, 4095–4101.Google Scholar
  34. 34.
    Vapaavuori, J.; Ras, R. H.; Kaivola, M.; Bazuin, C. G.; Priimagi, A. From partial to complete optical erasure of azobenzene-polymer gratings: Effect of molecular weight. J. Mater. Chem. C2015, 3, 11011–11016.Google Scholar
  35. 35.
    Wie, J. J.; Wang, D. H.; Lee, K. M.; White, T. J.; Tan, L. S. The contribution of hydrogen bonding to the photomechanical response of azobenzene-functionalized polyamides. J. Mater. Chem. C2018, 6, 5964–5974.Google Scholar
  36. 36.
    Oscurato, S. L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics2018, 7, 1387–1422.Google Scholar
  37. 37.
    Yagai, S.; Nakajima, T.; Karatsu, T.; Saitow, K. I.; Kitamura, A. Phototriggered self-assembly of hydrogen-bonded rosette. J. Am. Chem. Soc.2004, 126, 11500–11508.PubMedGoogle Scholar
  38. 38.
    Zhan, T. G.; Lin, M. D.; Wei, J.; Liu, L. J.; Yun, M. Y.; Wu, L; Zheng, S. T.; Yin, H. H.; Li, C. K.; Zhang, K. D. Visible-light responsive hydrogen-bonded supramolecular polymers based on ortho-tetrafluorinated azobenzene. Polym. Chem.2017, 8, 7384–7389.Google Scholar
  39. 39.
    Groombridge, A. S.; Palma, A.; Parker, R. M.; Abell, C.; Scherman, O. A. Aqueous interfacial gels assembled from small molecule supramolecular polymers. Chem. Sci.2017, 8, 1350–1355.PubMedGoogle Scholar
  40. 40.
    Du, M.; Li, L.; Zhang, J.; Li, K.; Cao, M.; Mo, L.; Hua, G.; Chen, Y.; Yu, H.; Yang, H. Photoresponsive iodine-bonded liquid crystals based on azopyridine derivatives with a low phase-transition temperature. Liquid Crystals2019, 46, 37–44.Google Scholar
  41. 41.
    Chen, Y.; Yu, H.; Zhang, L.; Yang, H.; Lu, Y. Photoresponsive liquid crystals based on halogen bonding of azopyridines. Chem. Commun.2014, 50, 9647–9649.Google Scholar
  42. 42.
    Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem. Soc. Rev.2015, 44, 815–832.PubMedGoogle Scholar
  43. 43.
    Zhou, W.; Kobayashi, T.; Zhu, H.; Yu, H. Electrically conductive hybrid nanofibers constructed with two amphiphilic salt components. Chem. Commun.2011, 47, 12768–12770.Google Scholar
  44. 44.
    Gao, J.; He, Y.; Xu, H.; Song, B.; Zhang, X.; Wang, Z.; Wang, X. Azobenzene-containing supramolecular polymer films for laser-induced surface relief gratings. Chem. Mater.2007, 19, 14–17.Google Scholar
  45. 45.
    Cui, L.; Zhao, Y. Azopyridine side chain polymers: An efficient way to prepare photoactive liquid crystalline materials through self-assembly. Chem. Mater.2004, 16, 2076–2082.Google Scholar
  46. 46.
    Shibaev, P. V.; Schaumburg, K.; Plaksin, V. Responsive chiral hydrogen-bonded polymer composites. Chem. Mater.2002, 14, 959–961.Google Scholar
  47. 47.
    Zettsu, N.; Ogasawara, T.; Mizoshita, N.; Nagano, S.; Seki, T. Photo-triggered surface relief grating formation in supra-molecular liquid crystalline polymer systems with detachable azobenzene unit. Adv. Mater.2008, 20, 516–521.Google Scholar
  48. 48.
    Li, S.; Feng, Y.; Long, P.; Qin, C.; Feng, W. The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes. J. Mater. Chem. C2017, 5, 5068–5075.Google Scholar
  49. 49.
    Hu, Y.; Wu, K. Y.; Zhu, T.; Shen, P.; Zhou, Y.; Li, X.; Wang, C. L.; Tu, Y.; Li, C. Y. Unique supramolecular liquid-crystal phases with different two-dimensional crystal layers. Angew. Chem.2018, 130, 13642–13646.Google Scholar
  50. 50.
    Huang, C. W.; Ji, W. Y.; Kuo, S. W. Stimuli-eesponsive supramolecular conjugated polymer with phototunable surface relief grating. Polym. Chem.2018, 9, 2813–2820.Google Scholar
  51. 51.
    Mosciatti, T.; Bonacchi, S.; Gobbi, M.; Ferlauto, L.; Liscio, F.; Giorgini, L.; Orgiu, E.; Samorì, P. Optical input/electrical output memory elements based on a liquid crystalline azobenzene polymer. ACS Appl. Mater. Interface2016, 8, 6563–6569.Google Scholar
  52. 52.
    Jansze, S. M.; Cecot, G.; Severin, K. Reversible disassembly of metallasupramolecular structures mediated by a metastable-state photoacid. Chem. Sci.2018, 9, 4253–4257.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Park, J.; Feng, D.; Yuan, S.; Zhou, H. C. Photochromic metal-organic frameworks: Reversible control of singlet oxygen generation. Angew. Chem. Int. Ed.2015, 54, 430–435.Google Scholar
  54. 54.
    Vapaavuori, J.; Bazuin, C. G.; Priimagi, A. Supramolecular design principles for efficient photoresponsive polymer-azobenzene complexes. J. Mater. Chem. C2018, 6, 2168–2188.Google Scholar
  55. 55.
    Wang, L.; Yin, L.; Zhang, W.; Zhu, X.; Fujiki, M. Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium. J. Am. Chem. Soc.2017, 139, 13218–13226.Google Scholar
  56. 56.
    Cui, Y.; Gong, H.; Wang, Y.; Li, D.; Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater.2018, 30, 1706807.Google Scholar
  57. 57.
    Li, Z. Y.; Chen, Y.; Wu, H.; Liu, Y. Photoinduced assembly/disassembly of supramolecular nanoparticle based on polycationic cyclodextrin and azobenzene-containing surfactant. Chemistry Select2018, 3, 3203–3207.Google Scholar
  58. 58.
    Yu, H.; Liu, H.; Kobayashi, T. Fabrication and photoresponse of supramolecular liquid-crystalline microparticles. ACS Appl. Mater. Interface2011, 3, 1333–1340.Google Scholar
  59. 59.
    Sun, Z.; Huang, Q.; He, T.; Li, Z.; Zhang, Y.; Yi, L. Multistimuli-responsive supramolecular gels: Design rationale, recent advances, and perspectives. Chem. Phys. Chem.2014, 15, 2421–2430.PubMedGoogle Scholar
  60. 60.
    Zhang, X.; Ma, X.; Wang, K.; Lin, S.; Zhu, S.; Dai, Y.; Xia, F. Recent advances in cyclodextrin-based light-responsive supra-molecular systems. Macromol. Rapid Commun.2018, 39, 1800142.Google Scholar
  61. 61.
    Fox, J. D.; Rowan, S. J. Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules2009, 42, 6823–6835.Google Scholar
  62. 62.
    Schoelch, S.; Vapaavuori, J.; Rollet, F. G.; Barrett, C. J. The orange side of disperse red 1: Humidity-driven color switching in supramolecular azo-polymer materials based on reversible dye aggregation. Macromol. Rapid. Commun.2017, 38, 1600582.Google Scholar
  63. 63.
    Li, Z. Y.; Zhang, Y.; Zhang, C. W.; Chen, L. J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H. B. Cross-linked supra-molecular polymer gels constructed from discrete multi-pillar. J. Am. Chem. Soc.2014, 136, 8577–8589.PubMedGoogle Scholar
  64. 64.
    Baroncini, M.; Bergamini, G. Azobenzene: A photoactive building block for supramolecular architectures. Chem. Rec.2017, 17, 700–712.PubMedGoogle Scholar
  65. 65.
    Stoffelen, C.; Voskuhl, J.; Jonkheijm, P.; Huskens, J. Dual stimuli-responsive self-assembled supramolecular nanoparticles. Angew. Chem. Int. Ed.2014, 53, 3400–3404.Google Scholar
  66. 66.
    Hou, P. P.; Zhang, Z. Y.; Wang, Q.; Zhang, M. Y.; Shen, Z.; Fan, X. H. Hierarchical structures in a main-chain/side-chain combined liquid crystalline polymer with a polynorbornene backbone and multi-benzene side-chain mesogens. Macromolecules2016, 49, 7238–7245.Google Scholar
  67. 67.
    Chen, H.; Ma, X.; Wu, S.; Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int Ed.2014, 53, 14149–14152.Google Scholar
  68. 68.
    Shen, P.; Qiu, L. Dual-responsive recurrent self-assembly of a supramolecular polymer based on the host-guest complexation interaction between β-cyclodextrin and azobenzene. New J. Chem.2018, 42, 3593–3601.Google Scholar
  69. 69.
    Kuad, P.; Miyawaki, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer. J. Am. Chem. Soc.2007, 129, 12630–12631.PubMedGoogle Scholar
  70. 70.
    Zhang, X.; Feng, Y.; Huang, D.; Li, Y.; Feng, W. Investigation of optical modulated conductance effects based on a graphene oxide-azobenzene hybrid. Carbon2010, 48, 3236–3241.Google Scholar
  71. 71.
    Bortolus, P.; Monti, S. Cis ⇌ trans photoisomerization of azobenzene-cyclodextrin inclusion complexes. J. Phys. Chem.1987, 91, 5046–5050.Google Scholar
  72. 72.
    Wang, Y.; Ma, N.; Wang, Z.; Zhang, X. Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with α-cyclodextrin. Angew. Chem. Int. Ed.2014, 46, 2823–2826.Google Scholar
  73. 73.
    Zhang, X.; Feng, Y.; Lv, P.; Shen, Y.; Feng, W. Enhanced reversible photoswitching of azobenzene unctionalized graphene oxide hybrids. Langmuir2010, 26, 18508–18511.PubMedGoogle Scholar
  74. 74.
    Leenders, C. M.; Albertazzi, L.; Mes, T.; Koenigs, M. M.; Palmans, A. R.; Meijer, E. W. Supramolecular polymerization in water harnessing both hydrophobic effects and hydrogen bond formation. Chem. Commun.2013, 49, 1963–1965.Google Scholar
  75. 75.
    Nie, J.; Liu, X.; Yan, Y.; Zhang, H. Supramolecular hydrogen-bonded photodriven actuators based on an azobenzene-con-taining main-chain liquid crystalline poly(ester-amide). J. Mater. Chem. C2017, 5, 10391–10398.Google Scholar
  76. 76.
    Toh, C. L.; Xu, J.; Lu, X.; He, C. Synthesis and characterisation of main-chain hydrogen-bonded supramolecular liquid crystalline complexes formed by azo-containing compounds. Liquid Crystals2008, 35, 241–251.Google Scholar
  77. 77.
    Rogness, D. C.; Riedel, P. J.; Sommer, J. R.; Reed, D. F.; Wiegel, K. N. Supramolecular main chain liquid crystalline polymers utilizing azopyridine derivatives. Liquid Crystals2006, 33, 567–572.Google Scholar
  78. 78.
    Sun, R.; Xue, C.; Ma, X.; Gao, M.; Tian, H.; Li, Q. Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p-sulfon-atocalix[4] arene) and pseudorotaxane. J. Am. Chem. Soc.2013, 135, 5990–5993.PubMedGoogle Scholar
  79. 79.
    Haque, H. A.; Hara, M.; Nagano, S.; Seki, T. Photoinduced inplane motions of azobenzene mesogens affected by the flexibility of underlying amorphous chains. Macromolecules2013, 46, 8275–8283.Google Scholar
  80. 80.
    Dai, Y.; Zhang, X. Dual stimuli-responsive supramolecular polymeric nanoparticles based on poly(α-cyclodextrin) and acetal-modified β-cyclodextrin-azobenzene. J. Polym. Res.2018, 25, 102.Google Scholar
  81. 81.
    Haque, H. A.; Kakehi, S.; Hara, M.; Nagano, S.; Seki, T. High-density liquid-crystalline azobenzene polymer brush attained by surface-initiated ring-opening metathesis polymerization. Langmuir2013, 29, 7571–7575.PubMedGoogle Scholar
  82. 82.
    Maity, C.; Hendriksen, W. E.; van Esch, J. H.; Eelkema, R. Spatial structuring of a supramolecular hydrogel by using a visible-light triggered catalyst. Angew. Chem. Int. Ed.2015, 54, 998–1001.Google Scholar
  83. 83.
    Lee, S.; Oh, S.; Lee, J.; Malpani, Y.; Jung, Y. S.; Kang, B.; Lee, J. Y.; Ozasa, K.; Isoshima, T.; Lee, S. Y.; Hara, M.; Hashizume, D.; Hara, M. Stimulus-responsive azobenzene supramolecules: Fibers, gels, and hollow spheres. Langmuir2013, 29, 5869–5877.PubMedGoogle Scholar
  84. 84.
    Kim, D. Y.; Shin, S.; Yoon, W. J.; Choi, Y. J.; Hwang, J. K.; Kim, J. S.; Lee C. R.; Choi, T. L.; Jeong, K. U. From smart denpols to remote-controllable actuators: Hierarchical superstructures of azobenzene-based polynorbornenes. Adv. Funct. Mater.2017, 27, 1606294.Google Scholar
  85. 85.
    Fréchet, J. M. Dendrimers and supramolecular chemistry. Proc. Natl. Acad. Sci.2002, 99, 4782–4787.PubMedGoogle Scholar
  86. 86.
    Qin, C.; Feng, Y.; Luo, W.; Cao, C.; Hu, W.; Feng, W. A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J. Mater. Chem. A2015, 3, 16453–16460.Google Scholar
  87. 87.
    Li, W.; Zhang, A.; Feldman, K.; Walde, P.; Schlüter, A. D. Thermoresponsive dendronized polymers. Macromolecules2008, 41, 3659–3667.Google Scholar
  88. 88.
    Roeser, J.; Moingeon, F.; Heinrich, B.; Masson, P.; Arnaud-Neu, F.; Rawiso, M.; Méry, S. Dendronized polymers with peripheral oligo(ethylene oxide) chains: Thermoresponsive behavior and shape anisotropy in solution. Macromolecules2011, 44, 8925–8935.Google Scholar
  89. 89.
    Liu, L.; Li, W.; Liu, K.; Yan, J.; Hu, G.; Zhang, A. Comblike thermoresponsive polymers with sharp transitions: Synthesis, characterization, and their use as sensitive colorimetric sensors. Macromolecules2011, 44, 8614–8621.Google Scholar
  90. 90.
    Chivers, P. R.; Smith, D. K. Shaping and structuring supra-molecular gels. Nature Rev. Mater.2019, 1, 463–478.Google Scholar
  91. 91.
    Yagai, S.; Kitamura, A. Recent advances in photoresponsive supramolecular self-assemblies. Chem. Soc. Rev.2008, 37, 1520–1529.PubMedGoogle Scholar
  92. 92.
    Stoychev, G.; Kirillova, A.; Ionov, L. Light-responsive shape-changing polymers. Adv. Opt. Mater.2019, 1900067.Google Scholar
  93. 93.
    Kato, T.; Hirota, N.; Fujishima, A.; Fréchet, J. M. Supra-molecular hydrogen-bonded liquid-crystalline polymer complexes. Design of side-chain polymers and a host-guest system by noncovalent interaction. J. Polym. Sci., Part A: Polym. Chem.1996, 34, 57–62.Google Scholar
  94. 94.
    Wiedbrauk, S.; Dube, H. Hemithioindigo—An emerging photoswitch. Tetrahedron Lett.2015, 56, 4266–4274.Google Scholar
  95. 95.
    Yao, X.; Li, T.; Wang, J.; Ma, X.; Tian, H. Recent progress in photoswitchable supramolecular self-assembling systems. Adv. Optical Mater.2016, 4, 1322–1349.Google Scholar
  96. 96.
    Wang, H.; Zhu, C. N.; Zeng, H.; Ji, X.; Xie, T.; Yan, X.; Wu, Z.; Huang, F. Reversible ion-conducting switch in a novel single-ion supramolecular hydrogel enabled by photoresponsive host-guest molecular recognition. Adv. Mater.2019, 31, 1807328.Google Scholar
  97. 97.
    Huang, H.; Orlova, T.; Matt, B; Katsonis, N. Long lived supramolecular helices promoted by fluorinated photoswitches. Macromol. Rapid Commun.2018, 39, 1700387.Google Scholar
  98. 98.
    Ren, H.; Chen, D.; Shi, Y.; Yu, H.; Fu, Z.; Yang, W. Charged end-group terminated poly(N-isopropylacrylamide)-b-poly(carboxylic azo) with unusual thermoresponsive behaviors. Macromolecules2018, 51, 3290–3298.Google Scholar
  99. 99.
    Yang, C.; Chen, L.; Huang, H.; Lu, Y.; Yi, J. Synthesis and properties of thermo-responsive azobenzene-based supra-molecular dendronized copolymer. Polym. Bull.2018, 1–11.Google Scholar
  100. 100.
    Si, Q.; Feng, Y.; Yang, W.; Fu, L.; Yan, Q.; Dong, L. P.; Feng, W. Controllable and stable deformation of a self-healing photo-responsive supramolecular assembly for an optically actuated manipulator arm. ACS Appl. Mater. Interface2018, 10, 29909–29917.Google Scholar
  101. 101.
    Qin, C.; Feng, Y.; An, H.; Han, J.; Cao, C.; Feng, W. Tetracarboxylated azobenzene/polymer supramolecular assemblies as high-performance multiresponsive actuators. ACS Appl. Mater. Interface2017, 9, 4066–4073.Google Scholar
  102. 102.
    Shen, Y. T.; Deng, K.; Zhang, X. M.; Feng, W.; Zeng, Q. D.; Wang, C.; Gong, J. R. Switchable ternary nanoporous supra-molecular network on photo-regulation. Nano Lett.2011, 11, 3245–3250.PubMedGoogle Scholar
  103. 103.
    Goodman, M.; Falxa, M. L. Conformational aspects of polypeptide structure. XXIII. Photoisomerization of azoaromatic polypeptides. J. Am. Chem. Soc.1967, 89, 3863–3867.PubMedGoogle Scholar
  104. 104.
    Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater.2011, 23, 2149–2180.PubMedGoogle Scholar
  105. 105.
    Pawlicka, A.; Sabadini, R. C.; Nunzi, J. M. Reversible light-induced solubility of disperse red 1 dye in a hydroxypropyl cellulose matrix. Cellulose2018, 25, 2083–2090.Google Scholar
  106. 106.
    Drotlef, D. M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater.2017, 29, 1701353.Google Scholar
  107. 107.
    Feng, Y.; Feng, W. Photo-responsive perylene diimid-azobenzene dyad: Photochemistry and its morphology control by self-assembly. Opt. Mater.2008, 30, 876–880.Google Scholar
  108. 108.
    Feng, Y.; Feng, W.; Noda, H.; Sekino, T.; Fujii, A.; Ozaki, M.; Yoshino, K. Synthesis of photoresponsive azobenzene chromophore-modified multi-walled carbon nanotubes. Carbon2007, 12, 2445–2448.Google Scholar
  109. 109.
    Zhao, X.; Feng, Y.; Qin, C.; Yang, W.; Si, Q.; Feng, W. Controlling heat release from a close-packed bisazobenzene-reduced-graphene-oxide assembly film for high-energy solidstate photothermal fuels. ChemSusChem2077, 10, 1395–1404.Google Scholar
  110. 110.
    Yang, W.; Feng, Y.; Si, Q.; Yan, Q.; Long, P.; Dong, L.; Fu, L.; Feng, W. Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output. J. Mater. Chem. A2019, 7, 97–106.Google Scholar
  111. 111.
    Li, M.; Feng, Y.; Liu, E.; Qin, C.; Feng, W. Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure. Sci. China Technol. Sci.2016, 59, 1383–1390.Google Scholar
  112. 112.
    Luo, W.; Feng, Y.; Cao, C.; Li, M.; Liu, E.; Li, S.; Qin, C.; Hu, W.; Feng, W. A high energy density azobenzene/graphene hybrid: A nano-templated platform for solar thermal storage. J. Mater. Chem. A2015, 3, 11787–11795.Google Scholar
  113. 113.
    Chen, D.; Liu, H.; Kobayashi, T.; Yu, H. Multiresponsive reversible gels based on a carboxylic azo polymer. J. Mater. Chem.2010, 20, 3610–3614.Google Scholar
  114. 114.
    Ni, Y.; Li, X.; Hu, J.; Huang, S.; Yu, H. Supramolecular liquid-crystalline polymer organogel: Fabrication, multiresponsiveness, and holographic switching properties. Chem. Mater.2019, 31, 3388–3394.Google Scholar
  115. 115.
    Qin, L.; Gu, W.; Wei, J.; Yu, Y. Piecewise phototuning of self-organized helical superstructures. Adv. Mater.2018, 30, 1704941.Google Scholar
  116. 116.
    Feng, Y.; Liu, H.; Luo, W.; Liu, E.; Zhao, N.; Yoshino, K.; Feng, W. Covalent functionalization of graphene by azoben-zene with molecular hydrogen bonds for long-term solar thermal storage. Sci. Rep.2013, 3, 3260.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Dong, L.; Feng, Y.; Wang, L.; Feng, W. Azobenzene-based solar thermal fuels: Design, properties, and applications. Chem. Soc. Rev.2018, 47, 7339–7368.PubMedGoogle Scholar
  118. 118.
    Han, G. G.; Li, H.; Grossman, J. C. Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat. Commun.2017, 8, 1446.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Kolpak, A. M.; Grossman, J. C. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett.2011, 11, 3156–3162.PubMedGoogle Scholar
  120. 120.
    Kimizuka, N.; Yanai, N.; Morikawa, M. A. Photon upconversion and molecular solar energy storage by maximizing the potential of molecular self-assembly. Langmuir2016, 32, 12304–12322.PubMedGoogle Scholar
  121. 121.
    Feng, W.; Li, S.; Li, M.; Qin, C.; Feng, Y. An energy-dense and thermal-stable bis-azobenzene/hybrid templated assembly for solar thermal fuel. J. Mater. Chem. A2016, 4, 8020–8028.Google Scholar
  122. 122.
    Saydjari, A. K.; Weis, P.; Wu, S. Spanning the solar spectrum: Azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv. Energy Mater.2017, 7, 1601622.Google Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hui-Tao Yu
    • 1
  • Jun-Wen Tang
    • 1
  • Yi-Yu Feng
    • 1
    • 2
    • 3
  • Wei Feng
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Key Laboratory of Advanced Ceramics and Machining TechnologyMinistry of EducationTianjinChina
  3. 3.Tianjin Key Laboratory of Composite and Functional MaterialsTianjinChina
  4. 4.Collaborative Innovation Center of Chemical Science and EngineeringTianjinChina

Personalised recommendations