Tailoring the Properties of Diels-Alder Reaction Crosslinked High-performance Thermosets by Different Bismaleimides

  • 42 Accesses


A series of Diels-Alder reaction cross-linked thermosets with recyclability and healability were prepared from furan-containing aromatic polyamide and bismaleimides with different chemical structures. The structures of synthesized bismaleimides were confirmed by 1H nuclear magnetic resonance (1H-NMR) spectroscopy; their reversible cross-linking with the furanic polyamide was further detected by 1H-NMR technique and sol-gel transition behavior. The dynamic mechanical analysis and tensile test revealed the variable thermal and mechanical properties of thermosets cross-linked by different bismaleimides and with different molar ratios of maleimide group to furan group (Ima/fur). The tensile test also demonstrated that the better recyclability and solvent-assisted healability of thermosets cross-linked could be achieved by more flexible bismaleimides. This work is expected to provide valuable information for design of recyclable and healable high-performance thermosets with desired properties.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. 1

    Lu, Q.; He, Y. B.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.; Yang, Q. H. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater.2017, 29, 1604460.

  2. 2

    Chang, G.; Wang, C.; Du, M.; Liu, S.; Yang, L. Metal-coordination crosslinked N-polyindoles as recyclable high-performance thermosets and nondestructive detection for their tensile strength and glass transition temperature. Chem. Commun.2018, 54, 2906–2909.

  3. 3

    Zhao, S.; Abu-Omar, M. M. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds. Macromolecules2018, 51, 9816–9824.

  4. 4

    Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polym. Chem.2012, 3, 935–945.

  5. 5

    Montarnal, D.; Capelot, M.; Tournilhac, C.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science2011, 334, 965–968.

  6. 6

    Colquhoun, H. M. Self-repairing polymers: Materials that heal themselves. Nat. Chem.2012, 4, 435–436.

  7. 7

    Zhang, Y.; Ying, H.; Hart, K. R.; Wu, Y.; Hsu, A. J.; Coppola, A. M.; Kim, T. A.; Yang, K.; Sottos, N. R.; White, S. R.; Cheng, J. Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds. Adv. Mater.2016, 28, 7646–7651.

  8. 8

    Ogden, W. A.; Guan, Z. Recyclable, strong, and highly malleable thermosets based on boroxine networks. J. Am. Chem. Soc.2018, 140, 6217–6220.

  9. 9

    Neal, J. A.; Mozhdehi, D.; Guan, Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc.2015, 137, 4846–4850.

  10. 10

    Ma, S.; Webster, D. C. Degradable thermosets based on labile bonds or linkages: A review. Prog. Polym. Sci.2018, 76, 65–110.

  11. 11

    Garcia, J. M.; Jones, J. O.; Virwani, K.; McCloskey, B. D.; Boday, D. J.; Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M. S.; Alsewailem, F.; Hedrick, J. L. Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science2014, 344, 732–735.

  12. 12

    Arslan, M.; Kiskan, B.; Yagci, Y. Benzoxazine-based thermosets with autonomous self-healing ability. Macromolecules2015, 48, 1329–1334.

  13. 13

    Zhang, B.; Kowsari, K.; Serjouei, A.; Dunn, M. L.; Ge, Q. Reprocessable thermosets for sustainable three-dimensional printing. Nat. Commun.2018, 9, 1831.

  14. 14

    Mueller, E.; Alsop, R. J.; Scotti, A.; Bleuel, M.; Rheinstädter, M. C.; Richtering, W.; Hoare, T. Dynamically cross-linked self-assembled thermoresponsive microgels with homogeneous internal structures. Langmuir2018, 34, 1601–1612.

  15. 15

    Schmolke, W.; Perner, N.; Sciffert, S. Dynamically cross-linked polydimethylsiloxane networks with ambient-temperature self-healing. Macromolecules2015, 48, 8781–8788.

  16. 16

    Zhang, C.; Liu Z.; Shi, Z.; Yin, J.; Tian, M. Versatile approach to building dynamic covalent polymer networks by stimulating the dormant groups. ACS Macro Lett.2018, 7, 1371–1375.

  17. 17

    Wang, Z.; Pan, Q. An omni-healable supercapacitor integrated in dynamically cross-linked polymer networks. Adv. Funct. Mater.2017, 27, 1700690.

  18. 18

    Roy, N.; Bruchmann, B.; Lehn, J. M. Dynamers: Dynamic polymers as self-healing materials. Chem. Soc. Rev.2015, 44, 3786–3807.

  19. 19

    Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: From old chemistry to modern day innovations. Adv. Mater.2017, 29, 1606100.

  20. 20

    Chen, X.; Dam, M. A.; Ono, K.; Mal, J.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science2002, 295, 1698–1702.

  21. 21

    Heo, Y.; Malakooti, M. H.; Sodano, H. A. Self-healing polymers and composites for extreme environments. J. Mater. Chem. A2016, 4, 17403–17411.

  22. 22

    Fu, G.; Li, Y.; Liang G.; Gu, A. Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers. J. Mater. Chem. A2016, 4, 4232–4241.

  23. 23

    Yoon, J. A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolay, R.; Zhang, Y.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K. Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules2012, 45, 142–149.

  24. 24

    Du, X.; Li, J.; Welle, A.; Li, L.; Feng, W.; Levkin, P. A. Reversible and rewritable surface functionalization and patterning via photodynamic disulfide exchange. Adv. Mater.0015, 27, 4997–5001.

  25. 25

    Black, S. P.; Sanders, J. K.; Stefankiewicz, A. R. Disulfide exchange: Exposing supramolecular reactivity through dynamic covalent chemistry. Chem. Soc. Rev.2014, 43, 1861–1872.

  26. 26

    Zhang, H.; Cai, C.; Liu, W.; Li, D.; Zhang, J.; Zhao, N.; Xu, J. Recyclable polydimethylsiloxane network crosslinked by dynamic transesterification reaction. Sci. Rep.2017, 7, 11833.

  27. 27

    Gandini, A. The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis. Prog. Polym. Sci.2013, 38, 1–29.

  28. 28

    Dewar, M. J. S.; Pierini, A. B. Mechanism of the Diels-Alder reaction. Studies of the addition of maleic anhydride to furan and methylfurans. J. Am. Chem. Soc.1984, 106, 203–208.

  29. 29

    Yu, S.; Zhang, R.; Wu, Q.; Chen, T.; Sun, P. Bio-inspired high-performance and recyclable cross-linked polymers. Adv. Mater.2013, 25, 4912–4917.

  30. 30

    Yang, Y.; Urban, M. W. Self-repairable polyurethane networks by atmospheric carbon dioxide and water. Angew. Chem. Int. Ed.2014, 53, 12142–12147.

  31. 31

    Li, J.; Zhang, G.; Deng, L.; Zhao, S.; Gao, Y.; Jiang, K.; Sun R.; Wong, C. In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J. Mater. Chem. A2014, 2, 20642–20649.

  32. 32

    Zeng, C.; Scino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. Bio-based furan polymers with self-healing ability. Macromolecules2013, 46, 1794–1802.

  33. 33

    Zeng, C.; Scino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. Self-healing bio-based furan polymers cross-linked with various bis-maleimides. Polymer2013, 54, 5351–5357.

  34. 34

    Trovatti, E.; Lacerda, T. M.; Carvalho, A. J.; Gandini, A. Recycling tires? Reversible crosslinking of poly(butadiene). Adv. Mater.2011, 27, 2242–2245.

  35. 35

    Polgar, L. M.; van Duin, M.; Broekhuis, A. A.; Picchioni, F. Use of Diels-Alder chemistry for thermoreversible cross-linking of rubbers: The next step toward recycling of rubber products? Macromolecules2015, 48, 7095–7105.

  36. 36

    Zhao, J.; Xu, R.; Luo, G.; Wu, J.; Xia, H. A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer. J. Mater. Chem. B2016, 4, 982–989.

  37. 37

    Bera, R.; Mondal, S.; Das, N. Nanoporous triptycene based network polyamides (TBPs) for selective CO2 uptake. Polymer2017, 111, 275–284.

  38. 38

    Duan, J.; Pan, Y.; Pacheco, F.; Litwiller, E.; Lai, Z.; Pinnau, I. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J. Memb. Sci.2015, 476, 303–310.

  39. 39

    Garcia, J. M.; Garcia F. C.; Serna, F.; de la Peña, J. High-performance aromatic polyamides. Prog. Polym. Sci.2010, 35, 623–686.

  40. 40

    Luo, K.; Li, J.; Duan, G.; Wang, Y.; Yu, J.; Zhu, J.; Hu, Z. Comb-shaped aromatic polyamide cross-linked by Diels-Alder chemistry: Towards recyclable and high-performance thermosets. Polymer2018, 142, 33–42.

  41. 41

    Li, J.; Zhang, G.; Deng, L.; Jiang, K.; Zhao, S.; Gao, Y.; Sun, R.; Wong, C. Thermally reversible and self-healing novolac epoxy resins based on Diels-Alder chemistry. J. Appl. Polym. Sci.2015, 132, 42167.

  42. 42

    Wang, A.; Niu, H.; He, Z.; Li, Y. Thermoreversible cross-linking of ethylene/propylene copolymer rubbers. Polym. Chem.2017, 8, 4494–4502.

  43. 43

    Toncelli, C.; De Reus, D. C.; Picchioni, F.; Broekhuis, A. A. Properties of reversible Diels-Alder furan/maleimide polymer networks as function of crosslink density. Macromol. Chem. Phys.2012, 213, 157–165.

Download references


This work was financially supported by the National Natural Science Foundation of China (No. 51473031), the Natural Science Foundation of Shanghai (No. 17ZR1401100), and the doctoral innovation foundation (No. CUSF-DH-D-2017037).

Author information

Correspondence to Yan Wang or Zu-Ming Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Huang, L., Wang, Y. et al. Tailoring the Properties of Diels-Alder Reaction Crosslinked High-performance Thermosets by Different Bismaleimides. Chin J Polym Sci 38, 268–277 (2020).

Download citation


  • Recyclability
  • Reparability
  • Thermosets
  • Diels-Alder reaction