Hofmeister Effect on Thermo-responsive Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges

  • 19 Accesses

  • 1 Citations


In this work, the Hofmeister effects of nine kinds of anions at different concentrations on the lower critical solution temperature (LCST) of the macroporous thermo-responsive poly(N-isopropylacrylamide) grafted poly(vinyl alcohol) formaldehyde (PVF-g-PNIPAM) hydrogels are investigated with differential scanning calorimetry (DSC). Four kinds of anions with strong hydration, including CO32–, SO42–, S2O32–, and F, and four kinds of anions with weak hydration, including Br, NO3, I, and ClO4, and Cl as a medium anion are systematically studied and found to demonstrate the effects of the residual hydroxyl groups and network structure of PVF on the LCST values of PVF-g-PNIPAM hydrogels in comparison with that of neat PNIPAM. On the one hand, the existence of hydroxyl groups on PVF backbone promotes the solubility of grafted PNIPAM due to their hydrophilicity and hydrogen-bond interactions with water. On the other hand, the network structure of as-prepared samples restricts free movements of grafted PNIPAM chains, which results in the increase of LCST values. In addition, the difference of grafting percentage also influences the variation of LCST values of PVF-g-PNIPAM hydrogels under salt concentration.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. 1

    Hofmeister, F. Zur Lehre Von der Wirkung der Salze. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1888, 25, 1–30.

  2. 2

    Zhang, Y.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the hofmeister series. J. Am. Chem. Soc.2005, 127, 14505–14510.

  3. 3

    Frank, H. S.; Evans, M. W. Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys.1945, 13, 507–532.

  4. 4

    Collins, K. D.; Washabaugh, M. W. The Hofmeister effect and the behavior of water at interfaces. Q. Rev. Biophys.1985, 18, 323–422.

  5. 5

    Marcus, Y. Effect of ions on the structure of water: Structure making and breaking. Chem. Rev.2009, 109, 1346–1370.

  6. 6

    Omta, A. W.; Kropman, M. F.; Woutersen, S.; Bakker, H. J. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science2003, 301, 347–349.

  7. 7

    Smith, J. D.; Saykally R. J.; Geissler P. L. The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc.2007, 129, 13847–13856.

  8. 8

    Zangi, R. Can salting-in/salting-out ions be classified as chaotropes/kosmotropes? J. Phys. Chem. B2010, 114, 643–650.

  9. 9

    Kunz, W.; Nostro P. L.; Ninham, B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci.2004, 9, 1–18.

  10. 10

    Tobias, D. J.; Hemminger, J. C. Getting specific about specific ion effects. Science2008, 319, 1197–1198.

  11. 11

    Zhang, Y.; Cremer, P. S. Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem.2010, 61, 63–83.

  12. 12

    Jungwirth, P.; Cremer, P. S. Beyond Hofmeister. Nat. Chem.2014, 6, 261–263.

  13. 13

    Broering, J. M.; Bommarius, A. S. Evaluation of Hofmeister effects on the kinetic stability of proteins. J. Phys. Chem. B2005, 109, 20612–20619.

  14. 14

    Pelton, R. Temperature-sensitive aqueous microgels. Adv. Colloid Interf. Sci.2000, 85, 1–33.

  15. 15

    Heskins, M.; Guillet, J. E. Solution properties of poly(Nisopropylacrylamide). J. Macromol. Sci. Part A1968, 2, 1441–1455.

  16. 16

    Cho, E. C.; Jaeyoung, L. A., Cho, K. Role of bound water and hydrophobic interaction in phase transition of poly(Nisopropylacrylamide) aqueous solution. Macromolecules2003, 36, 9929–9934.

  17. 17

    Graziano, G. On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutios. Int. J. Biol. Macromol.2000, 27, 89–97.

  18. 18

    Sherman, E.; Haran, G. Coil-globule transition in the denatured state of a small protein. Proc. Natl. Acad. Sci.2006, 103, 11539–11543.

  19. 19

    Moghaddam, S. Z.; Thormann, E. Hofmeister effect on PNIPAM in bulk and at an interface: Surface partitioning of weakly hydrated anions. Langmuir2017, 33, 4806–4815.

  20. 20

    Zhang, Y.; Furyk, S.; Sagle, L. B.; Cho, Y.; Bergbreiter, D. E.; Cremer, P. S. Effects of Hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J. Phys. Chem. C2007, 111, 8916–8924.

  21. 21

    Wang, T.; Liu, G.; Zhang, G; Craig, V. S. J. Insights into ion specificity in water-methanol mixtures via the reentrant behavior of polymer. Langmuir2012, 28, 1893–1899.

  22. 22

    Liu, L.; Wang, T.; Liu, C.; Lin, K.; Ding, Y.; Liu, G.; Zhang, G. Mechanistic insights into amplification of specific ion effect in water-nonaqueous solvent mixtures. J. Phys. Chem. B2013, 117, 2535–2544.

  23. 23

    Xu, Y.; Liu, G. Amplification of Hofmeister effect by alcohols. J. Phys. Chem. B2014, 118, 7450–7456.

  24. 24

    Murdoch, T. J.; Humphreys, B. A.; Willott, J. D.; Gregory, K. P.; Prescott, S. W.; Nelson, A.; Wanless, E. J.; Webber, G. B. Specific anion effects on the internal structure of a poly(N-isopropylacrylamide) brush. Macromolecules2016, 49, 6050–6060.

  25. 25

    Humphreys, B. A.; Willott, J. D.; Murdoch, T. J.; Webber, G. B.; Wanless, E. J. Specific ion modulated thermoresponse of poly(Nisopropylacrylamide) brushes. Phys. Chem. Chem. Phys.2016, 18, 6037–6046.

  26. 26

    López-León, T.; Ortega-Vinuesa, J. L.; Bastos-González, D.; Elaissari, A. Thermally sensitive reversible microgels formed by poly(N-Isopropylacrylamide) charged chains: A Hofmeister effect study. J. Colloid Interf. Sci.2014, 426, 300–307.

  27. 27

    Wang, Y.; Zhang, Y.; Wu, X.; He, X.; L, W. Rapid facile in situ synthesis of the Au/poly(N-isopropylacrylamide) thermosensitive gels as temperature sensors. Mater. Lett.2015, 143, 326–329.

  28. 28

    Dionigi, C.; Piñeiro, Y., Riminucci, A.; Bañobre, M.; Rivas, J.; Dediu, V. Regulating the thermal response of PNIPAM hydrogels by controlling the adsorption of magnetite nanoparticles. Appl. Phys. A2014, 114, 585–590.

  29. 29

    Zha, L.; Banik, B.; Alexis, F. Stimulus responsive nanogels for drug delivery. Soft Matter2011, 7, 5908–5916.

  30. 30

    Stile, R. A.; Burghardt, W. R.; Healy, K. E. Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules1999, 32, 7370–7379.

  31. 31

    Tanaka, T.; Fillmore D. J. Kinetics of swelling of gels. J. Chem. Phys.1979, 70, 1214–1218.

  32. 32

    Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature1995, 374, 240–242.

  33. 33

    Fundueanu, G.; Constantin, M.; Bucatariu, S.; Ascenzi, P. Poly(Nisopropylacrylamide-co-N-isopropylmethacrylamide) thermoresponsive microgels as self-regulated drug delivery system. Macromol. Chem. Phys.2016, 217, 2525–2533.

  34. 34

    Zhuo, R. X.; Li, W. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins. J. Polym. Sci., Part A: Polym. Chem.2003, 41, 152–159.

  35. 35

    Tang, Z.; Akiyama, Y.; Yamato, M.; Okano, T. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet. Biomaterials2010, 31, 7435–7443.

  36. 36

    Depa, K.; Strachota, A.; Šlouf, M.; Hromádková, J. Fast temperature-responsive nanocomposite PNIPAM hydrogels with controlled pore wall thickness: Force and rate of T-response. Eur. Polym. J.2012, 48, 1997–2007.

  37. 37

    Wu, X. S.; Hoffman, A. S.; Yager, P. Synthesis and characterization of thermal reversible macroporous poly(N-isopropylacrylamide) hydrogels. J. Polym. Sci., Part A: Polym. Chem.1992, 30, 2121–2129.

  38. 38

    Bonakdar, S.; Emami, S. H.; Shokrgozar, M. A.; Farhadi, A.; Ahmadi, S. A. H.; Amanzadeh, A. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mater. Sci. Eng. C2010, 30, 636–643.

  39. 39

    Gottrup, F.; Ågren, M. S.; Karlsmark, T. Models for use in wound healing research: A survey focusing on in vitro and in vivo adult soft tissue. Wound Repair Regen.2010, 8, 83–96.

  40. 40

    Avella, M.; Cocca, M.; Errico, M.; Gentile, G. Biodegradable PVOH-based foams for packaging applications. J. Cell. Plast.2011, 47, 271–281.

  41. 41

    Karimi, A.; Navidbakhsh, M.; Razaghi, R. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge. Mater. Sci. Eng. C2014, 39, 253–258.

  42. 42

    Wan, W.; Bannerman, A. D.; Yang, L.; Mak, H. Poly(vinyl alcohol) cryogels for biomedical applications. Adv. Polym. Technol.2014, 263, 283–321.

  43. 43

    Karimi, A.; Navidbakhsh, M.; Beigzadeh, B. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge. Tissue Cell2014, 46, 97–102.

  44. 44

    Giménez, V.; Mantecón, A.; Ronda, J. C.; Cádiz, V. Poly(vinyl alcohol) modified with carboxylic acid anhydrides: Crosslinking through carboxylic groups. J. Appl. Polym. Sci.1997, 65, 1643–1651.

  45. 45

    Breitenbach, A.; Pistel, K. F.; Kissel, T. Biodegradable comb polyesters. Part II. Erosion and release properties of poly(vinyl alcohol)-g-poly(lactic-co-glycolic acid). Polymer2000, 41, 4781–4792.

  46. 46

    Pan, Y.; Shi, K.; Liu, Z.; Wang, W.; Peng, C.; Ji, X. Synthesis of a new kind of macroporous polyvinylalcohol formaldehyde based sponge and its water superabsorption performance. RSC Adv.2015, 5, 78780–78789.

  47. 47

    Pan, Y.; Liu, Z.; Wang, W.; Peng, C.; Shi, K.; Ji, X. Highly efficient macroporous adsorbents for toxic metal ions in water system based on polyvinyl alcohol-formaldehyde sponges. J. Mater. Chem. A2016, 4, 2537–2549.

  48. 48

    Pan, Y.; Li, B.; Liu, Z.; Yang, Z.; Yang, X.; Shi, K.; Li, W.; Peng, C.; Wang, W.; Ji, X. Superfast and reversible thermoresponse of poly(N-isopropylacrylamide) hydrogels grafted on macroporous poly(vinyl alcohol) formaldehyde sponges. ACS Appl. Mater. Interfaces2018, 10, 32747–32759.

  49. 49

    Chen, G.; Hoffman, A. S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature1995, 373, 49–52.

  50. 50

    Mino, G.; Kaizerman, S. A new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J. Polym. Sci.Part A: Polym. Chem., 1958, 31, 242–243.

  51. 51

    Duke, F. R.; Forist, A. A. The theory and kinetics of specific oxidation. III. The cerate-2,3-butanediol reaction in nitric acid solution. J. Am. Chem. Soc.1949, 71, 2790–2792.

  52. 52

    Xia, Y.; Yin, X.; Burke, N. A. D.; Stöver, H. D. H. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules2005, 38, 5937–5943.

  53. 53

    Otake, K.; Inomata, H.; Konno, M.; Saito, S. Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules1990, 23, 283–289.

  54. 54

    Schild, H. G.; Tirrell, D. A. Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J. Phys. Chem.1990, 94, 4352–4356.

Download references


This work was financially supported by Foundation of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry.

Author information

Correspondence to Xiang-Ling Ji.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Sha, D., Xu, J. et al. Hofmeister Effect on Thermo-responsive Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges. Chin J Polym Sci 38, 257–267 (2020).

Download citation


  • Hofmeister effect
  • Thermo-responsive
  • Hydroxyl groups
  • Network structure