Chinese Journal of Polymer Science

, Volume 37, Issue 12, pp 1267–1272 | Cite as

Investigation on Viscoelasticity of Waterborne Polyurethane with Azobenzene-containing Pendant Groups under Ultraviolet and Visible-light Irradiation

  • Yi-Jun Liu
  • Dong Liu
  • Si-Han Li
  • Hua-Qing Liang
  • Fang-Ming ZhuEmail author


In this study, a novel waterborne polyurethane (WPU) with azobenzene-containing (azo-containing) pendant groups was synthesized by isophorone diisocyanate, long-chain diol of polycaprolactone, 2-ethyl-2-methyl-butanoic acid (2,2-dimethylolpropionic acid), 10-(4-(phenyldiazenyl)phenoxy)decyl-3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate, and N,N-diethyl-ethanamine (triethylamine). Moreover, the influence of ultraviolet and visible (UV-Vis) light irradiation on the viscoelasticity of azo-containing WPU film in terms of the reversible trans-cis photoisomerization of azo-containing pendant groups was investigated by UV-Vis light spectroscopy, atomic force microscopy, and dynamic thermomechanical analysis. The results revealed that the adhesion of azo-containing WPU with single crystal silicon atomic force microscope probe was about 13 nN when irradiated by 450 nm Vis light for 60 s at 25 °C. Subsequently, the adhesion increased to 82 nN after irradiation with 365 nm UV light for 60 s at 25 °C. In addition, the azo-containing WPU presented a photo-induced reversible transition of tensile modulus and tanδ in the range from about 2 MPa to 22 MPa and 6000 to 0.35 with UV-Vis light cyclic irradiation for 120 s at 25 °C, respectively.


Waterborne polyurethane Viscoelasticity Photoisomerization Azobenzene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Guangzhou Science and Technology Plan Project (No. 201607010348).


  1. 1.
    Monti, S.; Orlandi, G.; Palmieri, P. Features of the photochemically active state surfaces of azobenzene. Chem. Phys.1982, 71, 87–99.CrossRefGoogle Scholar
  2. 2.
    Freundlich, H.; Heller, W. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc.1982, 61, 2228–2230.CrossRefGoogle Scholar
  3. 3.
    Cembran, A.; Bernardi, F.; Garavelli, M.; Gagliardi, L.; Orlandi, G. On the mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene: S 0, S 1, and T 1. J. Am. Chem. Soc.2004, 126, 3234–3243.CrossRefGoogle Scholar
  4. 4.
    Henzl, J.; Mehlhorn, M.; Gawronski, H.; Rieder, K. H.; Morgenstern, K. Reversible cis-trans isomerization of a single azobenzene molecule. Angew. Chem. Int. Ed.2006, 45, 603–606.CrossRefGoogle Scholar
  5. 5.
    Schultz, T.; Quenneville, J.; Levine, B.; Toniolo, A.; Martínez, T. J.; Lochbrunner, S.; Schmitt, M.; Shaffer, J. P.; Zgieski, M. Z.; Stolow, A. Mechanism and dynamics of azobenzene photoisomerization. J. Am. Chem. Soc.2003, 125, 8098–8099.CrossRefGoogle Scholar
  6. 6.
    Bandara, H. M. D.; Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev.2012, 41, 1809–1825.CrossRefGoogle Scholar
  7. 7.
    Su, W.; Darkwa, J.; Kokogiannakis, G. Review of solid-liquid phase change materials and their encapsulation technologies. J. Renew. Sustain. Ener.2015, 48, 373–391.CrossRefGoogle Scholar
  8. 8.
    Zhang, X. M.; Zeng, Q. D.; Wang, C. Reversible phase transformation at the solid-liquid interface: STM reveals. Chem. Asian J.2013, 8, 2330–2340.CrossRefGoogle Scholar
  9. 9.
    Deng, W.; Brûlet A.; Albouy, P. A.; Keler, P.; Wang, X. G.; Li, M. H. Morphology study of a series of azobenzene-containing side-on liquid crystalline triblock copolymers. Chinese J. Polym. Sci.2012, 30, 258–268.CrossRefGoogle Scholar
  10. 10.
    Pan, S.; Ni, M.; Mu, B.; Li, Q.; Hu, X. Y.; Lin, C.; Chen, D.; Wang, L. Well-defined pillararene-based azobenzene liquid crystalline photoresponsive materials and their thin films with photomodulated surfaces. Adv. Funct. Mater.2015, 25, 3571–3580.CrossRefGoogle Scholar
  11. 11.
    Kim, D. Y.; Lee, S. A.; Kim, H.; Kim, S. M.; Kim, N.; Jeong, K. U. An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter. Chem. Commun.2015, 41, 11080–11083.CrossRefGoogle Scholar
  12. 12.
    Kitano, A.; Ichikawa, R.; Nakano, H. Photomechanical response observed for azobenzene-based photochromic amorphous molecular films fabricated on the surface of agar gel. Opt. Mater.2018, 86, 51–55.CrossRefGoogle Scholar
  13. 13.
    Hu, D.; Lin, J.; Jin, S.; Hu, Y.; Wang, W.; Wang, R.; Yang, B. Synthesis, structure and optical data storage properties of silver nanoparticles modified with azobenzene thiols. Mater. Chem. Phys.2016, 170, 108–112.CrossRefGoogle Scholar
  14. 14.
    Virkki, M.; Tuominen, O.; Forni, A.; Saccone, M.; Metrangolo, P.; Resnati, G.; Priimagi, A. Halogen bonding enhances nonlinear optical response in poled supramolecular polymers. J. Mater. Chem. C2015, 3, 3003–3006.CrossRefGoogle Scholar
  15. 15.
    Sobolewska, A.; Bartkiewicz, S.; Mysliwiec, J.; Singer, K. D. Holographic memory devices based on a single-component phototropic liquid crystal. J. Mater. Chem. C2014, 2, 1409–1412.CrossRefGoogle Scholar
  16. 16.
    Beharry, A. A.; Sadovski, O.; Woolley, G. A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 2011, 133, 19684–19687.CrossRefGoogle Scholar
  17. 17.
    Zhang, W.; Yoshida, K.; Fujiki, M.; Zhu, X. Unpolarized-light-driven amplified chiroptical modulation between chiral aggregation and achiral disaggregation of an azobenzene-alt-fluorene copolymer in limonene. Macromolecules2011, 44, 5105–5111.CrossRefGoogle Scholar
  18. 18.
    Wang, L.; Yin, L.; Zhang, W.; Zhu, X.; Fujiki, M. Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium. J. Am. Chem. Soc.2017, 139, 13218–13226.CrossRefGoogle Scholar
  19. 19.
    Yin, L.; Liu, M.; Zhao, Y.; Zhang, S.; Zhang, W.; Zhang, Z.; Zhu, X. Supramolecular chirality induced by chiral solvation in achiral cyclic Azo-containing polymers: Topological effects on chiral aggregation. Polym. Chem.2018, 9, 769–776.CrossRefGoogle Scholar
  20. 20.
    Chiu, K. Y.; Tran, T. T. H.; Chang, S. H.; Yang, T. F.; Su, Y. O. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC. Dyes Pigments2017, 146, 512–519.CrossRefGoogle Scholar
  21. 21.
    Chiu, K. Y.; Tran, T. T. H.; Wu, C. G.; Chang, S. H.; Yang, T. F.; Su, Y. O. Electrochemical studies on triarylamines featuring an azobenzene substituent and new application for small-molecule organic photovoltaics. J. Electroanal. Chem.2017, 787, 118–124.CrossRefGoogle Scholar
  22. 22.
    Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G. K.; Berger, R.; Butt, H. J.; Wu, S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem.2017, 9, 145–151.CrossRefGoogle Scholar
  23. 23.
    Jiang, W. H.; Wang, G. J.; He, Y. N.; An, Y. L.; Wang, X. G.; Song, Y. L.; Jiang, L. Properties of photo-responsive superhydrophobic azobenzene multilayers fabricated by electrostatic self-assembly. Chem. J. Chinese U.2005, 26, 1360–1362.Google Scholar
  24. 24.
    Zhang, J. L.; Wu, D. M.; Yang, D. Y.; Qiu, F. X. Environmentally friendly polyurethane composites: Preparation, characterization and mechanical properties. J. Polym. Environ. 2010, 18, 128–134.CrossRefGoogle Scholar
  25. 25.
    Akindoyo, J. O.; Beg, M.; Ghazali, S.; Islam, M. R.; Jeyaratnam, N.; Yuvaraj, A. R. Polyurethane types, synthesis and applications—A review. RSC Adv.2010, 6, 114453–114482.CrossRefGoogle Scholar
  26. 26.
    Kang, S. Y.; Ji, Z.; Tseng, L. F.; Turner, S. A.; Villanueva, D. A.; Johnson, R.; Ariana, A.; Langer, R. Design and synthesis of waterborne polyurethanes. Adv. Mater.2018, 30, 1706237.CrossRefGoogle Scholar
  27. 27.
    Li, J.; Zhang, X.; Gooch, J.; Sun, W.; Wang, H.; Wang, K. Photo- and pH-sensitive azo-containing cationic waterborne polyurethane. Polym. Bull.2015, 72, 881–895.CrossRefGoogle Scholar
  28. 28.
    Ban, J.; Mu, L.; Yang, J.; Chen, S.; Zhuo, H. New stimulus-responsive shape-memory polyurethanes capable of UV lighttriggered deformation, hydrogen bond-mediated fixation, and thermal-induced recovery. J. Mater. Chem. A2017, 5, 14514–14518.CrossRefGoogle Scholar
  29. 29.
    Wang, S.; Song, Y.; Jiang, L. Photoresponsive surfaces with controllable wettability. J. Photoch. Photobio. C2007, 8, 18–29.CrossRefGoogle Scholar
  30. 30.
    Dai, L.; Cai, L.; Yuan, Y.; Liu, A.; Li, Z. Reversible wettability of optothermal responsively perfluoroalkyl azobenzene self-assembled monolayers. Phosphorus. Sulfur.2017, 192, 283–291.CrossRefGoogle Scholar
  31. 31.
    Joshi, G. K.; Blodgett, K. N.; Muhoberac, B. B.; Johnson, M. A.; Smith, K. A.; Sardar, R. Ultrasensitive photoreversible molecular sensors of azobenzene- functionalized plasmonic nanoantennas. Nano Lett.2014, 14, 532–540.CrossRefGoogle Scholar
  32. 32.
    Freyer, W.; Brete, D.; Schmidt, R.; Gahl, C.; Carley, R.; Weinelt, M. Switching behavior and optical absorbance of azobenzene-functionalized alkanethiols in different environments. J. Photoch. Photobio. A2009, 204, 102–109.CrossRefGoogle Scholar
  33. 33.
    Zhang, S.; Jiang, J.; Yang, C.; Chen, M.; Liu, X. Facile synthesis of waterborne UV-curable polyurethane/silica nanocomposites and morphology, physical properties of its nanostructured films. Prog. Org. Coat.2011, 70, 1–8.CrossRefGoogle Scholar
  34. 34.
    Liu, D.; Bastiaansen, C. W.; den Toonder, J. M.; Broer, D. J. Photoswitchable surface topologies in chiral nematic coatings. Angew. Chem. Int. Ed.2012, 51, 892–896.CrossRefGoogle Scholar
  35. 35.
    Dokukin, M. E.; Sokolov, I. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir2012, 28, 16060–16071.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yi-Jun Liu
    • 1
  • Dong Liu
    • 1
  • Si-Han Li
    • 1
  • Hua-Qing Liang
    • 1
  • Fang-Ming Zhu
    • 1
    • 2
    Email author
  1. 1.GDHPPC Lab, School of ChemistrySun Yat-sen UniversityGuangzhouChina
  2. 2.Key Lab for Polymer Composite and Functional Materials of Ministry of Education, School of ChemistrySun Yat-sen UniversityGuangzhouChina

Personalised recommendations