Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 12, pp 1283–1289 | Cite as

Orientation Efforts as Regulatory Factor of Structure Formation in Permeable Porous Poly(vinylidene fluoride) Films

  • G. K. ElyashevichEmail author
  • I. S. Kuryndin
  • I. Yu. Dmitriev
  • V. K. Lavrentyev
  • N. N. Saprykina
  • V. Bukošek
Article
  • 24 Downloads

Abstract

The manufacturing process of poly(vinylidene fluoride) microporous films containing through flow channels and permeable to liquids has been elaborated. The process is based on polymer melt extrusion with subsequent stages of annealing, uniaxial extensions (“cold” and “hot” drawing), and thermal stabilization. The effect of orientation parameters (melt draw ratio and extension degrees) on overall porosity, permeability, morphology, and content of polar piezoactive β-phase in crystalline structure of the films was investigated by filtration porosimetry, sorptometry, scanning electron microscopy, X-ray scattering, and mechanical properties measurements. It is shown that the through pores were formed by a percolation mechanism. It is observed that permeability and the β-phase content increased with the growth of extension degree at the pore formation stages but the portion of β-crystallites decreased with increasing melt draw ratio at extrusion, which permitted to regulate the combination of through permeability and piezoactivity values by variation of the preparation process parameters.

Keywords

Poly(vinylidene fluoride) Microporous films Permeability Structure-property relations Piezoelectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.; Aspuru-Guzik, A.; Gordon R. G.; Aziz, M. J. A metal-free organic-inorganic aqueous flow battery. Nature2014, 505, 195–198.CrossRefGoogle Scholar
  2. 2.
    Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature2001, 414, 625–627.CrossRefGoogle Scholar
  3. 3.
    Gutfleisch, O.; Willard, M. A.; Brück, E.; Chen, C. H.; Sankar, S. G.; Liu, J. P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater.2011, 23, 821–842.CrossRefGoogle Scholar
  4. 4.
    Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater.2014, 26, 4607–4626.CrossRefGoogle Scholar
  5. 5.
    Gheibi, A.; Latifi, M.; Merati, A. A.; Bagherzadeh, R. Electrical power generation from piezoelectric electrospun nanofibers membranes: Electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J Polym. Res.2014, 21, 1–7.Google Scholar
  6. 6.
    Park, T.; Kim, B.; Kim, Y.; Kim, E. Highly conductive PEDOT electrodes for harvesting dynamic energy through piezoelectric conversion. J. Mater. Chem. A2014, 2, 5462–5469.CrossRefGoogle Scholar
  7. 7.
    Bae, S. Ahn J. Graphene-P(VDF-TrFE) multilayer film for flexible applications. ACS Nano2013, 4, 3130–3138.CrossRefGoogle Scholar
  8. 8.
    Wen, X. N.; Yang, W. Q.; Jing, Q. S.; Wang, Z. L. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano2014, 8, 7405–7412.CrossRefGoogle Scholar
  9. 9.
    Lee, J. H.; Lee, K. Y.; Kumar, B.; Tien, N. T.; Lee, N.; Kim, S. W. Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ. Sci.2013, 6, 169–175.CrossRefGoogle Scholar
  10. 10.
    Hinchet, R.; Lee, S.; Ardila, G.; Montès, L.; Mouis, M.; Wang, Z. L. Performance optimization of vertical nanowire-based piezoelectric nanogenerators. Adv. Funct. Mater.2014, 44, 971–977.CrossRefGoogle Scholar
  11. 11.
    Anton, S. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct.2007, 16, R1–R21.CrossRefGoogle Scholar
  12. 12.
    Bowen, C. R.; Kim, H. A.: Weaver, P. M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci2014, 7, 25–44.CrossRefGoogle Scholar
  13. 13.
    Chang, C.; Tran, V. H.; Wang, J.; Fuh, Y. K.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett.2010, 10, 726–731.CrossRefGoogle Scholar
  14. 14.
    Ottman, G. K.; Hofmann, H. F.; Bhatt, A. C.; Lesieutre, G. A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron.2002, 17, 669–676.CrossRefGoogle Scholar
  15. 15.
    Qin, Y.; Wang, X.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature2008, 451, 809–813.CrossRefGoogle Scholar
  16. 16.
    Liu, F.; Hashim, N. A.; Liu, Y.; Abed, M. R. M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci.2011, 375, 1–27.CrossRefGoogle Scholar
  17. 17.
    Kim, J. F.; Jung, J. T.; Wang, H. H.; Lee, S. Y.; Moore, T.; Sanguineti, A.; Drioli, E.; Lee, Y. M. Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods. J. Membr. Sci.2016, 509, 94–104.CrossRefGoogle Scholar
  18. 18.
    Cui, Z. Y.; Xu, Y. Y.; Zhu, L. P.; Wei, X. Z.; Zhang, C. F.; Zhu, B. K. Preparation of PVDF/PMMA blend microporous membranes for lithium ion batteries via thermally induced phase separation process. Mater. Lett.2008, 62, 3809–3811.CrossRefGoogle Scholar
  19. 19.
    Dmitriev, I. Yu.; Bukošek, V.; Lavrentyev, V. K.; Elyashevich, G. K. Structure and deformational behavior of poly(vinylidene fluoride) hard elastic films. Acta Chim. Slov.2007, 54, 784–791.Google Scholar
  20. 20.
    Lei, C.; Hu, B.; Xu, R.; Cai, Q.; Shi, W. Influence of room-temperature-stretching technology on the crystalline morphology and microstructure of PVDF hard elastic film. Appl. Polym. Sci.2014, 131, P. 400077.Google Scholar
  21. 21.
    Sadeghi, F.; Tabatabaei, S. H.; Ajji, A.; Carreau, P. J. Effect of PVDF characteristics on extruded film morphology and porous membranes feasibility by stretching. J. Polym. Sci., Part B: Polym. Phys.2009, 47, 1219–1229.CrossRefGoogle Scholar
  22. 22.
    Elyashevich, G. K.; Kuryndin, I. S.; Lavrentyev, V. K.; Bobrovsky, A. Y.; Bukošek, V. Porous structure, permeability, and mechanical properties of polyolefin microporous films. Phys. Solid State2012, 54, 1907–1916.CrossRefGoogle Scholar
  23. 23.
    Salimi, A.; Yousefi, A. A. FTIR studies of α-phase crystal formation in stretched PVDF films. Polym. Test.2003, 22, 699–704.CrossRefGoogle Scholar
  24. 24.
    Hu, B.; Cai, Q.; Xu, R.; Mo, H.; Chen, C.; Zhang, F.; Lei, C. Influence of uniaxial cold stretching followed by uniaxial hot stretching conditions on crystal transformation and microstructure in extrusion cast and annealed polyvinylidene fluoride porous membranes. J. Plast. Film Sheet.2015, 31, 269–285.CrossRefGoogle Scholar
  25. 25.
    Stauffer, D.; Aharony, A. Introduction to percolation theory. London, Taylor and Francis, 1994.Google Scholar
  26. 26.
    Elyashevich, G. K.; Rosova, E. Y.; Karpov, E. A. Microporous polyethylene film and method of its production. Russian Federation Patent 140,936. April 15, 1997. Google Scholar
  27. 27.
    Elyashevich, G. K.; Karpov, E. A.; Kozlov, A. G. Deformational behavior and mechanical properties of hard elastic and porous films of polyethylene. In Macromol.Symp. «Mechanical Behavior of Polymeric Materials». Ed.: J. Kahovec, Wiley-VCH, 1999, Vol. 147, pp. 91–101.Google Scholar
  28. 28.
    Xu, J.; Johnson M.; Wilkes G. L. A tubular film extrusion of poly(vinylidene fluoride): Structure/process/property behavior as a function of molecular weight. Polymer2004, 45, 5327–5340.CrossRefGoogle Scholar
  29. 29.
    Ramadan, K. S.; Sameoto, D; Evoy, S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct.2014, 23, 033001.CrossRefGoogle Scholar
  30. 30.
    Wan, C.; Bowen, C. R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. J. Mater. Chem. A2017, 5, 3091–3128.CrossRefGoogle Scholar
  31. 31.
    Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci.2014, 39, 683–706.CrossRefGoogle Scholar
  32. 32.
    Hermans, P. H.; Weidinger, A. On the determination of the crystalline fraction of polyethylenes from X-ray diffraction. Macromol. Chem.1961, 44, 24–36.CrossRefGoogle Scholar
  33. 33.
    Kuryndin, I. S.; Lavrentyev, V. K.; Bukošek, V.; Elyashevich, G. K. Percolation transitions in porous polyethylene and polypropylene films with lamellar structures. Polym. Sci., Ser. A.2015, 57, 717–722.CrossRefGoogle Scholar
  34. 34.
    Zheng, Y. R.; Zhang, J.; Sun, X. L.; Li, H. H.; Ren, Z. J.; Yan, S. K. Enhanced αγ′ transition of poly(vinylidene fluoride) by step crystallization and subsequent annealing. Chinese J. Polym. Sci.2018, 36, 598–603.CrossRefGoogle Scholar
  35. 35.
    Zheng, Y. R.; Zhang, J.; Sun, X. L.; Li, H. H.; Ren, Z. J.; Yan, S. K. Crystal structure regulation of ferroelectric poly(vinylidene fluoride) via controlled melt-recrystallization. Ind. Eng. Chem. Res.2017, 56, 4580–4587.CrossRefGoogle Scholar
  36. 36.
    Nakamura, K.; Sawai, D.; Watanabe, Yu.; Taguchi, D.; Takahashi, Yo.; Furukawa, T.; Kanamoto, T. Effect of annealing on the structure and properties of poly(vinylidene fluoride) β-form films. J. Polym. Sci., Part B: Polym. Phys.2003, 41, 1701–1712.CrossRefGoogle Scholar
  37. 37.
    Darestani, M. T.; Coster, H. G. L.; Chilcott, T. C.; Fleming, S.; Nagarajan, V.; An, H. Piezoelectric membranes for separation processes: Fabrication and piezoelectric properties. J. Membr. Sci.2013, 434, 184–192.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • G. K. Elyashevich
    • 1
    Email author
  • I. S. Kuryndin
    • 1
  • I. Yu. Dmitriev
    • 1
  • V. K. Lavrentyev
    • 1
  • N. N. Saprykina
    • 1
  • V. Bukošek
    • 2
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Faculty for Natural Sciences and EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations