Chinese Journal of Polymer Science

, Volume 37, Issue 12, pp 1305–1318 | Cite as

Computational Design and Fabrication of Enantioselective Recognition Sorbents for L-phenylalanine Benzyl Ester on Multiwalled Carbon Nanotubes Using Molecular Imprinting Technology

  • T. Sajini
  • Renjith Thomas
  • Beena MathewEmail author


Computational strategies have been employed to investigate the influence of the nature of monomers and cross-linker in order to design three dimensional imprinted polymers with selective recognition sites for L-phenylalanine benzyl ester (L-PABE) molecule. Here, computational chemistry methods were applied to screen the molar quantity of functional monomers that interact with one mole of the template molecule. Effects of the nature of functional monomer, cross-linker, and molar ratio were determined computationally using density functional calculations with B3LYP functional and generic 6–31G basis set. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were used as the functional monomer and crosslinking agent, respectively. L-PABE imprinted polymer layered on multiwalled carbon nanotube (MWCNT) and conventional bulk MIP were synthesised and characterized as well. To investigate the influence of pre-organization of binding sites on the selectivity of L-PABE, respective non-imprinted polymers were also synthesised. MWCNT-MIPs and MIPs exhibited the highest adsorption capacity towards L-PABE. The synthesized polymers revealed characteristic adsorption features and selectivity towards L-PABE in comparison with those of its enantiomer analogues.


Molecular imprinting L-phenylalanine benzyl ester Density functional theory Monomer Cross-linker Selectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ertürk, G.; Mattiasson, B. Molecular imprinting techniques used for the preparation of biosensors. Sensors2017, 288, 1–17.Google Scholar
  2. 2.
    Shah, N; Haneef, M; Park, J; Ul-Islam, M. A brief overview of molecularly imprinted polymers: From basics to applications. J. Pharm. Res.2012, 5, 3309–3317.Google Scholar
  3. 3.
    Ou, J.; Dong, J.; Tian, T.; Hu, J.; Ye, M.; Zou, H. Enantioseparation of tetrahydropalmatine and Tröger’s base by molecularly imprinted monolith in capillary electrochromatography. J. Biochem. Biophys. Methods2007, 70, 71–76.PubMedGoogle Scholar
  4. 4.
    Lu, Y.; Li, C.; Zhang, H.; Liu, X. Study on the mechanism of chiral recognition with molecularly imprinted polymers. Anal. Chim. Acta2003, 489, 33–43.Google Scholar
  5. 5.
    Mahony, J. O.; Karlsson, B. C. G.; Nicholls, I. A. Correlated theoretical, spectroscopic and X-ray crystallographic studies of a non-covalent molecularly imprinted polymerisation system. Analyst2007, 132, 1161–1168.Google Scholar
  6. 6.
    Sajini, T.; Gigimol, M. G.; Mathew, B. A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices. Mater. Today Chem.2019, 11, 283–295.Google Scholar
  7. 7.
    Zhong, C.; Yang, B.; Jiang, X.; Li, J. Critical reviews in analytical chemistry current progress of nanomaterials in molecularly imprinted electrochemical sensing current progress of nanomaterials in molecularly imprinted electrochemical sensing. Crit. Rev. Anal. Chem.2018, 48, 15–32.PubMedGoogle Scholar
  8. 8.
    Rezaei, B.; Rahmanian, O. Direct nanolayer preparation of molecularly imprinted polymers immobilized on multiwalled carbon nanotubes as a surface-recognition sites and their characterization. J. Appl. Polym. Sci.2012, 125, 798–803.Google Scholar
  9. 9.
    Jacobs, C. Nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta2010, 662, 105–127.PubMedGoogle Scholar
  10. 10.
    Anirudhan, T. S.; Alexander, S. Synthesis and characterization of vinyl-functionalized multiwalled carbon nanotubes based molecular imprinted polymer for the separation of chlorpyrifos from aqueous solutions. J. Chem. Technol. Biotechnol.2013, 88, 1847–1858.Google Scholar
  11. 11.
    Xu, L.; Xu, Z. Molecularly imprinted polymer based on multiwalled carbon nanotubes for ribavirin recognition. J. Polym. Res.2012, 19, 1–6.Google Scholar
  12. 12.
    Kan, X.; Zhao, Y.; Geng, Z.; Wang, Z.; Zhu, J. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J. Phys. Chem. C2008, 112, 4849–4854.Google Scholar
  13. 13.
    Scida, K.; Stege, P. W.; Haby, G.; Messina, G. A.; García, C. D. Recent applications of carbon-based nanomaterials in analytical chemistry. Anal. Chim. Acta2011, 691, 6–17.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Prasad, B. B.; Srivastava, A.; Pandey, I.; Tiwari, M. P. Electrochemically grown imprinted polybenzidine nanofilm on multiwalled carbon nanotubes anchored pencil graphite fibers for enantioselective micro-solid phase extraction coupled with ultratrace sensing of D- and L-methionine. J. Chromatogr. B2013, 912, 65–74.Google Scholar
  15. 15.
    Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon2008, 6, 2–9.Google Scholar
  16. 16.
    Nicholls, I. A.; Andersson, H. S.; Golker, K.; Henschel, H.; Karlsson, B. C. G.; Olsson, G. D.; Rosengren, A. M.; Shoravi, S.; Suriyanarayanan, S.; Wiklander, J. G.; Wikman, S. Rational design of biomimetic molecularly imprinted materials: Theoretical and computational strategies for guiding nanoscale structured polymer development. Anal. Bioanal. Chem.2011, 400, 1771–1786.PubMedGoogle Scholar
  17. 17.
    Meier, F.; Schott, B.; Riedel, D.; Mizaikoff, B. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Anal. Chim. Acta2012, 744, 68–74.PubMedGoogle Scholar
  18. 18.
    Riahi, S.; Edris-Tabrizi, F.; Javanbakht, M.; Ganjali, M. R.; Norouzi, P. A computational approach to studying monomer selectivity towards the template in an imprinted polymer. J. Mol. Model.2009, 15, 829–836.PubMedGoogle Scholar
  19. 19.
    Cowen, T.; Karim, K.; Piletsky, S. Computational approaches in the design of synthetic receptors—A review. Anal. Chim. Acta2016, 936, 62–74.PubMedGoogle Scholar
  20. 20.
    Nicholls, I. A.; Chavan, S.; Golker, K.; Karlsson, C. G.; Olsson, G. D.; Rosengren, A. M. Theoretical and computational strategies for the study of the molecular imprinting process and polymer performance. Adv. Biochem. Eng. Biotechnol.2015, 150, 25–50.PubMedGoogle Scholar
  21. 21.
    Batra, D.; Shea, K. J. Combinatorial methods in molecular imprinting. Curr. Opin. Chem. Biol.2003, 7, 434–442.PubMedGoogle Scholar
  22. 22.
    Sajini, T.; Aravind, K.; Mathew, B. Theoretical and computational strategies for the fabrication of enantioselective recognition site on molecularly imprinted polymers. Int. J. Curr. Adv. Res.2017, 6, 6334–6336.Google Scholar
  23. 23.
    Nicholls, I. A.; Andersson, H. S.; Charlton, C.; Henschel, H.; Karlsson, B. C. G.; Karlsson, J. K.; Mahony, J. O.; Rosengren, A. M.; Rosengren, K. J.; Wikman, S. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens. Bioelectron.2009, 25, 543–552.PubMedGoogle Scholar
  24. 24.
    Tadi, K. K.; Motghare, R. V. Computational and experimental studies on oxalic acid imprinted polymer. J. Chem. Sci.2013, 125, 413–418.Google Scholar
  25. 25.
    Riahi, S.; Eynollahi, S.; Ganjali, M. R.; Norouzi, P. Computational approach to investigation of template/monomer complex in imprinted polymers; dinitrobenzene sensor. Int. J. Electrochem. Sci.2010, 5, 509–516.Google Scholar
  26. 26.
    Khan, M. S.; Wate, P. S.; Krupadam, R. J. Combinatorial screening of polymer precursors for preparation of benzo. J. Mol. Model.2012, 18, 1969–1981.PubMedGoogle Scholar
  27. 27.
    Nicholls, I. A.; Karlsson, C. G.; Olsson, G. D.; Rosengren, A. M. Computational strategies for the design and study of molecularly imprinted materials. Ind. Eng. Chem. Res.2018, 10, 27.Google Scholar
  28. 28.
    McCormick, T. M.; Bridges, C. R.; Carrera, E. I.; Dicarmine, P. M.; Gibson, G. L.; Hollinger, J.; Kozycz, L. M.; Seferos, D. S. Conjugated polymers: Evaluating DFT methods for more accurate orbital energy modeling. Macromolecules2013, 46, 3879–3886.Google Scholar
  29. 29.
    Singh, A. K.; Singh, M. Designing L-serine targeted molecularly imprinted polymer via theoretical investigation. J. Theor. Comput. Chem.2016, 15 Google Scholar
  30. 30.
    Mojica, E. R. E. Screening of different computational models for the preparation of sol-gel imprinted materials. J. Mol. Model.2013, 19, 3911–3923.PubMedGoogle Scholar
  31. 31.
    Silva, C. F.; Borges, K. B.; Soares, C. Rational design of a molecularly imprinted polymer for dinotefuran: Theoretical and experimental studies aimed at the development of an efficient adsorbent for microextraction by packed sorbent. Analyst2018, 143, 141–149.Google Scholar
  32. 32.
    Pardeshi, S.; Patrikar, R.; Dhodapkar, R.; Kumar, A. Validation of computational approach to study monomer selectivity toward the template Gallic acid for rational molecularly imprinted polymer design. J. Mol. Model.2012, 18, 4797–4810.PubMedGoogle Scholar
  33. 33.
    Acquaye, C. T. A.; Gorecki, M.; Wilchek, M.; Votano, J. R.; Rich, A. Antisickling activity of amino acid benzyl esters. Proc. Natl. Acad. Sci.1980, 77, 181–185.PubMedGoogle Scholar
  34. 34.
    Acquaye, C. T. A.; Young, J. D.; Ellory, J. C.; Gorecki, M.; Wilchek, M. Mode of transport and possible mechanism of action of L-phenylalanine benzyl ester as an anti-sickling agent. Biochim. Biophys. Acta1982, 693, 407–416.PubMedGoogle Scholar
  35. 35.
    Frisch, G. E. S. M. J.; Trucks, G. W.; Schlegel, H. B.; Robb, B. M. M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, H. P. H. G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Izmaylov, M. H. A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Ehara, T. N. M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Honda, J. Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, E. B. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Kudin, J. N. K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Raghavachari, J. T. K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Cossi, J. B. C. M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Bakken, R. E. S. V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Yazyev, J. W. O. O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Martin, G. A. V. R. L.; Morokuma, K.; Zakrzewski, V. G.; Salvador, A. D. D. P.; Dannenberg, J. J.; Dapprich S.; Farkas, D. J. F. O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. Gaussian 09 Revis. D.01, 2013.Google Scholar
  36. 36.
    Dennington, R.; Keith, T.; Millam, J. Semichem Inc. Shawnee Mission. KS, 2016.Google Scholar
  37. 37.
    Polimer, P.; Molekul, C. Synthesis and characterization of a molecularly imprinted polymer for Pb2+ uptake using 2-vinylpyridine as the complexing monomer. Sains. Malaysiana2010, 39, 829–835.Google Scholar
  38. 38.
    Zakaria, N. D.; Yusof, N. A.; Haron, J.; Abdullah, A. H. Synthesis and evaluation of a molecularly imprinted polymer. Int. J. Mol. Sci.2009, 10, 354–365.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang, W.; Li, Q.; Cong, J.; Wei, B.; Wang, S. Mechanism analysis of selective adsorption and specific recognition by molecularly imprinted polymers of Ginsenoside Re. Polymers2018, 10.Google Scholar
  40. 40.
    Yuan, H.; Ma, X.; Xu, Z. Pore structure analysis of PFSA/SiO2 composite catalysts from nitrogen adsorption isotherms. Sci. China Chem.2011, 54, 257–262.Google Scholar
  41. 41.
    Li, S.; Huang, X.; Zheng, M.; Li, W.; Tong, K. Molecularly imprinted polymers: Thermodynamic and kinetic considerations on the specific sorption and molecular recognition. Sensors2008, 8, 2854–2864.PubMedGoogle Scholar
  42. 42.
    Karim, K.; Breton, F.; Rouillon, R.; Piletska, E. V.; Guerreiro, A.; Chianella, I.; Piletsky, S. A. How to find effective functional monomers for effective molecularly imprinted polymers? Adv. Drug Deliver. Rev.2005, 57, 1795–1808.Google Scholar
  43. 43.
    Liu, J.; Wang, Y.; Tang, S. Theoretical guidance for experimental research of the dicyandiamide and methacrylic acid molecular imprinted polymer. New J. Chem.2017, 41, 13370–13376.Google Scholar
  44. 44.
    Muhammad, T.; Nur, Z.; Piletska, E. V.; Piletsky, S. A. Rational design of molecularly imprinted polymer: The choice of cross-linker. Analyst2012, 137, 2623–2628.PubMedGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research & Post Graduate Department of Chemistry, St. Berchmans College (Autonomous)Affiliated to Mahatma Gandhi UniversityChanganasseryIndia
  2. 2.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations