Synthesis and Physico-chemical Properties of (Co)polymers of 2-[(2E)-1-methyl-2-buten-1-yl]aniline and Aniline

  • A. AndriianovaEmail author
  • A. Shigapova
  • Y. Biglova
  • R. Salikhov
  • I. Abdrakhmanov
  • A. Mustafin


A new soluble polymer on 2-[(2E)-1-methyl-2-buten-1-yl]aniline and its copolymers with aniline basis have been synthesized in various molar ratios. For all samples, the electrical conductivity, morphology, solubility, electrochemical properties, as well as spectral and molecular mass characteristics have been studied, and a comparative analysis with polyaniline has been carried out. The substituent introduced into the aniline aromatic ring significantly improves the solubility in typical organic solvents of a high molecular weight product. The morphology of the test compounds depends on the co-monomer ratio. As the content of the substituted aniline in the initial mixture increases, the morphology of the polymer changes from the inherent polyaniline fibrous microstructure to the globular one with irregular substituted polyaniline shapes and sizes. Electrochemical study of the samples revealed that the higher the oxidation potential, the wider the band gap (ranging from 2.00 to 2.15). The electrical conductivity decreases in proportion to the increase in the substituted aniline concentration of the initial co-monomer mixture and amounts to 12.5–35.7 × 106 nSm.


Polyaniline 2-[(2E)-1-methyl-2-buten-1-yl]aniline Copolymers Solubility Electrochemical properties Electrical conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was carried out within the framework of the state task program (No. AAAA-A19-119020890014-7). Electron microscopic studies were performed on the basis of the Center for Collective Use of Scientific Equipment of the Institute of Metal Superplasticity Problems, RAS “Structural and Physico-Mechanical Material Studies”.

Supplementary material

10118_2019_2261_MOESM1_ESM.pdf (792 kb)
Synthesis and Physico-chemical Properties of (Co)polymers of 2-[(2E)-1-methyl-2-buten-1-yl]aniline and Aniline


  1. 1.
    Jarjes, Z.; Samian, M.; AbGhani, S. Conductive polymers: Their preparations and catalyses on NADH oxidation at carbon cloth electrodes. Arab. J. Chem. 2015, 5, 726–731.CrossRefGoogle Scholar
  2. 2.
    Long, Y.; Li, M.; Gu, C.; Wan, M.; Duvail, J.; Liu, Z.; Fan, Z. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 2011, 36, 1415–1442.CrossRefGoogle Scholar
  3. 3.
    Salikhov, R.; Biglova, Y.; Mustafin, A. New organic polymers for solar cells. In Emerging solar energy materials. ed. by Sadia Ameen. IntechOpen 2018, 83–104.Google Scholar
  4. 4.
    Nicolas-Debarnot, D.; Poncin-Epaillard, F. Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta 2003, 475, 1–15.CrossRefGoogle Scholar
  5. 5.
    Stejskal, J.; Sapurina, I.; Trchova, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010, 35, 1420–1481.CrossRefGoogle Scholar
  6. 6.
    Bhadra, S.; Khastgir, D.; Singha, N. K., Lee, J. H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810.CrossRefGoogle Scholar
  7. 7.
    Ćirić-MarjanoviĆ, G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013, 177, 1–47.CrossRefGoogle Scholar
  8. 8.
    Vivekanandan, J.; Ponnusamy, V.; Mahudeswaran, A.; Vijayanand, P. Synthesis and characterization and conductivity study of polyaniline by chemical oxidative and electrochemical methods. Arch. Appl. Sci. Res 2011, 3, 147–153.Google Scholar
  9. 9.
    Verma, D. Role of novel microstructure of polyaniline-CSA thin film in ammonia sensing at room temperature. Sens. Actuat. B: Chem. 2008, 134, 373–376.CrossRefGoogle Scholar
  10. 10.
    Shakoor, A.; Rizvi, T.; Sulaiman, M.; Nasir, M.; Ishtiaq, M. Electronic properties of aniline doped with dodecylbenzenesulphonic acid (PANI-DBSA) and poly(methyl methacrylate) (PMMA) blends in the presence of hydroquinone. J. Mater. Sci.: Mater. Electron. 2010, 21, 603–607.Google Scholar
  11. 11.
    Im, S.; Han, M.; Cho, S.; Oh, S. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth. Met. 2002, 126, 53–60.CrossRefGoogle Scholar
  12. 12.
    Liu, J.; Hu, X.; Wang, X.; Yao, J.; Sun, D.; Fan, Z.; Guo, M. Facile synthesis of hollow microspheres of polyaniline using poly(sodium 4-styrenesulfonic acid) as dopant. Polym. Int. 2014, 63, 722–726.CrossRefGoogle Scholar
  13. 13.
    Summers, G. Conducting polyaniline nanorods doped with aromatic carboxyl chain end functionalized polymers. Synth. Met. 2015, 209, 251–261.CrossRefGoogle Scholar
  14. 14.
    Kabomo, T.; Scurrell, M. The effects of ring substituents in aniline on the reactivity of PANI with hydrogen tetrachloroaurate and the dispersion of gold nanoparticles. Polym. Adv. Technol. 2016, 27, 759–764.CrossRefGoogle Scholar
  15. 15.
    Khamngoen, K.; Paradee, N.; Sirivat, A. Chemical oxidation polymerization and characterization of poly ortho-anisidine nanoparticles. J. Polym. Res. 2016, 23, 172.CrossRefGoogle Scholar
  16. 16.
    Liu, Y.; Li, S.; Yao, P.; Zhang, Q. Synthesis of organic soluble poly(substituted-aniline) from 2-methyl-6-ethylaniline tar. Int. J. Mod. Phys. B 2017, 31, 1744091.CrossRefGoogle Scholar
  17. 17.
    Barbero, C.; Salavagione, H.; Acevedo, D.; Grumelli, D.; Garay, F.; Planes, G.; Miras, M. Novel synthetic methods to produce functionalized conducting polymers I. Polyanilines. Electrochim. Acta 2004, 49, 3671–3686.CrossRefGoogle Scholar
  18. 18.
    Waware, U. The spectral and morphological studies of the conductive polyaniline thin film derivatives by the in situ copolymerization. J. Mater. Sci-Mater. El. 2017, 28, 15178–15183.CrossRefGoogle Scholar
  19. 19.
    Thota, A.; Arukula, R.; Narayan, R.; Rao, C.; Raju, K. V. S. N. Energy storage and surface protection properties of dianiline co-polymers. RSC Adv. 2015, 5, 106523–106535.CrossRefGoogle Scholar
  20. 20.
    Tran, H.; D’Arcy, J.; Wang, Y.; Beltramo, P.; Strong, V.; Kaner, R. The oxidation of aniline to produce “polyaniline”: A process yielding many different nanoscale structures. J. Mater. Chem. 2011, 21, 3534–3550.CrossRefGoogle Scholar
  21. 21.
    Waware, U.; Summers, G.; Hamouda, A. M. S.; Rashid, M. Synthesis and characterization of polyaniline, poly(3-fluoroaniline), and poly(aniline-co-3-fluoroaniline) derivatives obtained by chemical oxidative polymerization methods. Polym. Plast. Technol. Eng. 2017, 57, 1–11.Google Scholar
  22. 22.
    Movahedifar, F.; Modarresi-Alam, A. The effect of initiators and oxidants on the morphology of poly[(±)-2-(sec-butyl) aniline] a chiral bulky substituted polyaniline derivative. Polym. Adv. Technol. 2016, 27, 131–139.CrossRefGoogle Scholar
  23. 23.
    Teasdale, P.; Spinks, G.; Kane-Maguire, L.; Wallace, G. Conductive electroactive polymers: Intelligent polymer systems. in Conductive electroactive polymers: Intelligent polymer systems, CRC, New York, 2008.Google Scholar
  24. 24.
    Ortega, E.; Armijo, F.; Jessop, I.; Del Valle, M. A.; Díaz, F. R. Chemical synthesis and characterization of polyaniline derivatives: Substituent effect on solubility and conductivity. J. Chil. Chem. Soc. 2013, 58, 1959–1962.CrossRefGoogle Scholar
  25. 25.
    Biglova, Yu.; Salikhov, R.; Abdrakhmanov, I.; Salikhov, T.; Safargalin, I.; Mustafin, A. Preparation and investigation of soluble functionalized polyanilines. Phys. Solid State 2017, 59, 1228–1233.CrossRefGoogle Scholar
  26. 26.
    Salavagione, H. Preparation and characterization of “clickable” polyaniline derivatives on graphene modified electrodes. J. Electroanal. Chem. 2016, 765, 118–125.CrossRefGoogle Scholar
  27. 27.
    Abdrakhmanov, I.; Mustafin, A.; Sharafutdinov, V. Claisen rearrangement in the series of aromatic amines, Gilem, Ufa, 2014.Google Scholar
  28. 28.
    Cope, A.; Hardy, E. The introduction of substituted vinyl groups. V. A rearrangement involving the migration of an allyl group in a three-carbon system. J. Am. Chem. Soc. 1940, 62, 441–444.CrossRefGoogle Scholar
  29. 29.
    Abdrakhmanov, I.; Sharafutdinov, V. M.; Tolstikov, G. A. Amino-Kleisen rearrangement as a method for the synthesis of C-cycloalkanilanilines. Bull. Russ. Acad. Sci.: Chem. 1982, 9, 2160.Google Scholar
  30. 30.
    Gvozdenović, M.; Jugović, B.; Stevanović, J.; Grgur, B. Electrochemical synthesis of electroconducting polymers. Hem. Ind. 2014, 68, 673–684.CrossRefGoogle Scholar
  31. 31.
    Aprano, G.; Leclerc, M.; Zotti, G. Steric and electronic effects in methyl and methoxy substituted polyanilines. J. Electroanal. Chem. 1993, 351, 145–158.CrossRefGoogle Scholar
  32. 32.
    Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Synthesis and characterization of polyaniline derivatives: Poly(2-alkoxyanilines) and poly(2,5-dialkoxyanilines). Chem. Mater. 1995, 7, 33–42.CrossRefGoogle Scholar
  33. 33.
    Wei, Y.; Focke, W.; Wnek, G.; Ray, A.; MacDiarmid, A. Synthesis and electrochemistry of alkyl ring-substituted polyanilines. J. Phys. Chem. 1989, 93, 495–499.CrossRefGoogle Scholar
  34. 34.
    Aymen, M. Correlation between Raman spectroscopy and electrical conductivity of graphite/polyaniline composites reacted with hydrogen peroxide. J. Phys. D: Appl. Phys. 2013, 46, 335103.CrossRefGoogle Scholar
  35. 35.
    Barbero, C.; Miras, M.; Haas, O.; Kötz, R. Direct in situ evidence for proton/anion exchange in polyaniline films by means of probe beam deflection. J. Electrochem. Soc. 1991, 138, 669–672.CrossRefGoogle Scholar
  36. 36.
    Lindfors, T.; Ivaska, A. pH sensitivity of polyaniline and its substituted derivatives. J. Electroanal. Chem. 2002, 531, 43–52.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. Andriianova
    • 1
    • 2
    Email author
  • A. Shigapova
    • 1
  • Y. Biglova
    • 1
    • 2
  • R. Salikhov
    • 1
  • I. Abdrakhmanov
    • 2
  • A. Mustafin
    • 2
  1. 1.Ufa Institute of ChemistryRussian Academy of SciencesUfaRussia
  2. 2.Bashkir State UniversityUfaRussia

Personalised recommendations