Skip to main content
Log in

Dispersion of Titanium(IV) Oxide Nanoparticles in Mixed Matrix Membrane Using Octaisobutyl Polyhedral Oligomeric Silsesquioxane for Enhanced CO2/CH4 Separation Performance

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Titanium(IV) oxide (TiO2) nanoparticles have been incorporated into mixed matrix membranes (MMMs) to improve gas separation performance. However, TiO2 nanoparticles tend to agglomerate due to high surface energy and van der Waals forces. This leads to precipitation which causes the formation of non-homogeneous MMM morphology. In this study, the effect of octaisobutyl polyhedral oligomeric silsesquioxane (POSS) addition on TiO2/polysulfone MMM was investigated. The aims are to enhance gas separation performance whilst preventing agglomeration of TiO2 nanoparticles. The results demonstrated that inclusion of POSS as dispersant increases MMMs’ CO2/CH4 selectivity and permeance, possibly due to less void formation and more evenly distributed pore structure. For example, synergistic addition of 5 wt% TiO2 and 5 wt% POSS increased the CO2/CH4 selectivity up to 390% compared to MMM without POSS. This is supported by elemental mapping of titanium which revealed that POSS successfully dispersed TiO2 nanoparticles and prevented aggregation. TiO2-POSS/PSf MMMs also retained their favorable thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Songolzadeh, M.; Soleimani, M.; Takht, R. M.; Songolzadeh, R. Carbon dioxide separation from flue gases: A Technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014, 34, 828131.

    Google Scholar 

  2. Aaron, D.; Tsouris, C. Separation of CO2 from flue gas: A review. Sep. Sci. Technol. 2005, 40, 321–348.

    Article  CAS  Google Scholar 

  3. Spillman, R., Economics of gas separation membrane processes. In Membrane Science and Technology, Chapter 13, Noble, R. D.; Stern, S. A., Eds. Elsevier, 1995; Vol. 2, pp. 589–667.

  4. Julian, H.; Wenten, I. G. Polysulfone membranes for CO2/CH4 separation: State of the art. J. Eng. 2012, 2, 484–495.

    Google Scholar 

  5. Marino, T.; Russo, F.; Rezzouk, L.; Bouzid, A.; Figoli, A. PES-Kaolin mixed matrix membranes for arsenic removal from water. Membranes 2017, 7, 57.

    Article  CAS  PubMed Central  Google Scholar 

  6. Ursino, C.; Castro-Muñoz, R.; Drioli, E.; Gzara, L.; Albeirutty, M.; Figoli, A. Progress of nanocomposite membranes for water treatment. Membranes 2018, 8, 18.

    Article  CAS  PubMed Central  Google Scholar 

  7. Matteucci, S. T. Gas transport properties of reverse selective nanocomposite materials. Thesis, The University of Texas at Austin, Ann Arbor, 2007.

    Google Scholar 

  8. Ismail, A.; Kusworo, T.; Mustafa, A. B.; Hasbullah, H. Understanding the solution-diffusion mechanism in gas separation membrane for engineering students. Regional Conference on Engineering Education (RCEE), 2005, 155–159.

  9. Goh, P. S.; Ismail, A. F.; Sanip, S. M.; Ng, B. C.; Aziz, M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011, 81, 243–264.

    Article  CAS  Google Scholar 

  10. Thompson, J. A.; Chapman, K. W.; Koros, W. J.; Jones, C. W.; Nair, S. Sonication-induced Ostwald ripening of ZIF-8 nano-particles and formation of ZIF-8/polymer composite membranes. Microporous Mesoporous Mater. 2012, 158, 292–299.

    Article  CAS  Google Scholar 

  11. Fatemi, S. M.; Foroutan, M. Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J. Nanostruct. Chem. 2016, 6, 29–40.

    Article  CAS  Google Scholar 

  12. Dechnik, J.; Sumby, C. J.; Janiak, C. Enhancing mixed-matrix membrane performance with metal-organic framework additives. Cryst. Growth Des. 2017, 17, 4467–4488.

    Article  CAS  Google Scholar 

  13. Zornoza, B.; Seoane, B.; Zamaro, J. M.; TŽllez, C.; Coronas, J. Synergy gas separation effects when using fillers of different natures (MOFs and zeolites) in the same mixed matrix membrane. Procedia Engineering 2012, 44, 2118–2120.

    Article  Google Scholar 

  14. Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M. M.; Ismail, A. F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci. 2014, 39, 817–861.

    Article  CAS  Google Scholar 

  15. Yu, X.; Zhong, S.; Li, X.; Tu, Y.; Yang, S.; Van Horn, R. M.; Ni, C.; Pochan, D. J.; Quirk, R. P.; Wesdemiotis, C.; Zhang, W. B.; Cheng, S. Z. D. A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J. Am. Chem. Soc. 2010, 132, 16741–16744.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, W.; Müller, A. H. E. A “click chemistry” approach to linear and star-shaped telechelic POSS-containing hybrid polymers. Macromolecules 2010, 43, 3148–3152.

    Article  CAS  Google Scholar 

  17. Zhang, W.; Müller, A. H. E. Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog. Polym. Sci. 2013, 38, 1121–1162.

    Article  CAS  Google Scholar 

  18. Hybrid Plastics, MS0825 — Octaisobutyl POSS. Hybrid Plastics Inc.: 2017.

  19. Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527–538.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, D.; Ji, Z.; Jiang, X.; Dunphy, D. R.; Brinker, J.; Keller, A. A. Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One 2013, 8, e81239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wheeler, P. A.; Misra, R.; Cook, R. D.; Morgan, S. E. Polyhedral oligomeric silsesquioxane trisilanols as dispersants for titanium oxide nanopowder. J. Appl. Polym. Sci. 2008, 108, 2503–2508.

    Article  CAS  Google Scholar 

  22. Surya, M. R.; Padaki, M.; Matsuura, T.; Abdullah, M. S.; Ismail, A. F. Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Sep. Purif. Technol. 2014, 132, 187–194.

    Article  CAS  Google Scholar 

  23. Kuvarega, A. T.; Khumalo, N.; Dlamini, D.; Mamba, B. B. Polysulfone/N, Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep. Purif. Technol. 2018, 191, 122–133.

    Article  CAS  Google Scholar 

  24. Guo, J.; Kim, J. Modifications of polyethersulfone membrane by doping sulfated-TiO2 nanoparticles for improving anti-fouling property in wastewater treatment. RSC Adv. 2017, 7, 33822–33828.

    Article  CAS  Google Scholar 

  25. Reza-E-Rabby, M.; Jeelani, S.; Rangari, V. K. Structural analysis of polyhedral oligomeric silsesquioxane coated SiC nano-particles and their applications in thermoset polymers. J. Nanomater. 2015, 2015, 13.

    Article  CAS  Google Scholar 

  26. Teoh, S. H.; Tang, Z. G.; Hastings, G. W., in Handbook of Bio-material Properties. Springer US, 1998, p. 590.

    Google Scholar 

  27. Rafiq, S.; Man, Z.; Maitra, S.; Muhammad, N.; Ahmad, F. Kinetics of thermal degradation of polysulfone/polyimide blended polymeric membranes. J. Appl. Polym. Sci. 2012, 133, 3755–3763.

    Article  CAS  Google Scholar 

  28. Fina, A.; Tabuani, D.; Carniato, F.; Frache, A.; Boccaleri, E.; Camino, G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim. Acta 2006, 440, 36–42.

    Article  CAS  Google Scholar 

  29. Song, L.; He, Q.; Hu, Y.; Chen, H.; Liu, L. Study on thermal degradation and combustion behaviors of PC/POSS hybrids. Polym. Degrad. Stab. 2008, 93, 627–639.

    Article  CAS  Google Scholar 

  30. Dooher, T.; Dixon, D.; McIlhagger, A. Multiwalled carbon nanotube/polysulfone composites. J. Thermoplast. Compos. Mater. 2011, 24, 499–515.

    Article  CAS  Google Scholar 

  31. Bras, M. L.; Wilkie, C. A.; Bourbigot, S., in Fire retardancy of polymers: New applications of mineral fillers. Royal Society of Chemistry, Cambridge, UK, 2005.

    Google Scholar 

  32. Liang, C. Y.; Uchytil, P.; Petrychkovych, R.; Lai, Y. C.; Friess, K.; Sipek, M.; Suen, S. Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep. Purif. Technol. 2012, 92, 57–63.

    Article  CAS  Google Scholar 

  33. Sadeghi, M.; Afarani, H. T.; Tarashi, Z. Preparation and investigation of the gas separation properties of polyurethane-TiO2 nanocomposite membranes. Korean J. Chem. Eng. 2015, 32, 97–103.

    Article  CAS  Google Scholar 

  34. Løining, V. S. Enhancement of the separation performances of high free volume polymers for CO 2 capture. Thesis, Norwegian University of Science and Technology, 2017.

  35. Ghosal, K.; Freeman, B. D.; Chern, R. T.; Alvarez, J. C.; de la Campa, J. G.; Lozano, A. E.; de Abajo, J. Gas separation properties of aromatic polyamides with sulfone groups. Polymer 1995, 36, 793–800.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CO2 Research Centre (CO2RES) under Institute of Contaminant Management, Universiti Teknologi PETRONAS (UTP) for the experimental and technical support. In addition, we would like to express our gratitude for the financial support received from YUTP-FRG (No. 015 3AA-E08) and FRGS (Ref. No. FRGS/1/2018/TK02/UTP/02/3, Cost Center 015MA0-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Ching Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, G.Y.E., Oh, P.C., Lau, K.K. et al. Dispersion of Titanium(IV) Oxide Nanoparticles in Mixed Matrix Membrane Using Octaisobutyl Polyhedral Oligomeric Silsesquioxane for Enhanced CO2/CH4 Separation Performance. Chin J Polym Sci 37, 654–663 (2019). https://doi.org/10.1007/s10118-019-2246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2246-8

Keywords

Navigation