Dispersion of Titanium(IV) Oxide Nanoparticles in Mixed Matrix Membrane Using Octaisobutyl Polyhedral Oligomeric Silsesquioxane for Enhanced CO2/CH4 Separation Performance

  • Grace Ying En Tan
  • Pei Ching OhEmail author
  • Kok Keong Lau
  • Siew Chun Low


Titanium(IV) oxide (TiO2) nanoparticles have been incorporated into mixed matrix membranes (MMMs) to improve gas separation performance. However, TiO2 nanoparticles tend to agglomerate due to high surface energy and van der Waals forces. This leads to precipitation which causes the formation of non-homogeneous MMM morphology. In this study, the effect of octaisobutyl polyhedral oligomeric silsesquioxane (POSS) addition on TiO2/polysulfone MMM was investigated. The aims are to enhance gas separation performance whilst preventing agglomeration of TiO2 nanoparticles. The results demonstrated that inclusion of POSS as dispersant increases MMMs’ CO2/CH4 selectivity and permeance, possibly due to less void formation and more evenly distributed pore structure. For example, synergistic addition of 5 wt% TiO2 and 5 wt% POSS increased the CO2/CH4 selectivity up to 390% compared to MMM without POSS. This is supported by elemental mapping of titanium which revealed that POSS successfully dispersed TiO2 nanoparticles and prevented aggregation. TiO2-POSS/PSf MMMs also retained their favorable thermal stability.


Applications Membranes Nanoparticles Separation techniques Thermogravimetric analysis (TGA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are thankful to CO2 Research Centre (CO2RES) under Institute of Contaminant Management, Universiti Teknologi PETRONAS (UTP) for the experimental and technical support. In addition, we would like to express our gratitude for the financial support received from YUTP-FRG (No. 015 3AA-E08) and FRGS (Ref. No. FRGS/1/2018/TK02/UTP/02/3, Cost Center 015MA0-003).


  1. 1.
    Songolzadeh, M.; Soleimani, M.; Takht, R. M.; Songolzadeh, R. Carbon dioxide separation from flue gases: A Technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014, 34, 828131.Google Scholar
  2. 2.
    Aaron, D.; Tsouris, C. Separation of CO2 from flue gas: A review. Sep. Sci. Technol. 2005, 40, 321–348.CrossRefGoogle Scholar
  3. 3.
    Spillman, R., Economics of gas separation membrane processes. In Membrane Science and Technology, Chapter 13, Noble, R. D.; Stern, S. A., Eds. Elsevier, 1995; Vol. 2, pp. 589–667.Google Scholar
  4. 4.
    Julian, H.; Wenten, I. G. Polysulfone membranes for CO2/CH4 separation: State of the art. J. Eng. 2012, 2, 484–495.Google Scholar
  5. 5.
    Marino, T.; Russo, F.; Rezzouk, L.; Bouzid, A.; Figoli, A. PES-Kaolin mixed matrix membranes for arsenic removal from water. Membranes 2017, 7, 57.CrossRefGoogle Scholar
  6. 6.
    Ursino, C.; Castro-Muñoz, R.; Drioli, E.; Gzara, L.; Albeirutty, M.; Figoli, A. Progress of nanocomposite membranes for water treatment. Membranes 2018, 8, 18.CrossRefGoogle Scholar
  7. 7.
    Matteucci, S. T. Gas transport properties of reverse selective nanocomposite materials. Thesis, The University of Texas at Austin, Ann Arbor, 2007.Google Scholar
  8. 8.
    Ismail, A.; Kusworo, T.; Mustafa, A. B.; Hasbullah, H. Understanding the solution-diffusion mechanism in gas separation membrane for engineering students. Regional Conference on Engineering Education (RCEE), 2005, 155–159.Google Scholar
  9. 9.
    Goh, P. S.; Ismail, A. F.; Sanip, S. M.; Ng, B. C.; Aziz, M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011, 81, 243–264.CrossRefGoogle Scholar
  10. 10.
    Thompson, J. A.; Chapman, K. W.; Koros, W. J.; Jones, C. W.; Nair, S. Sonication-induced Ostwald ripening of ZIF-8 nano-particles and formation of ZIF-8/polymer composite membranes. Microporous Mesoporous Mater. 2012, 158, 292–299.CrossRefGoogle Scholar
  11. 11.
    Fatemi, S. M.; Foroutan, M. Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J. Nanostruct. Chem. 2016, 6, 29–40.CrossRefGoogle Scholar
  12. 12.
    Dechnik, J.; Sumby, C. J.; Janiak, C. Enhancing mixed-matrix membrane performance with metal-organic framework additives. Cryst. Growth Des. 2017, 17, 4467–4488.CrossRefGoogle Scholar
  13. 13.
    Zornoza, B.; Seoane, B.; Zamaro, J. M.; TŽllez, C.; Coronas, J. Synergy gas separation effects when using fillers of different natures (MOFs and zeolites) in the same mixed matrix membrane. Procedia Engineering 2012, 44, 2118–2120.CrossRefGoogle Scholar
  14. 14.
    Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M. M.; Ismail, A. F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci. 2014, 39, 817–861.CrossRefGoogle Scholar
  15. 15.
    Yu, X.; Zhong, S.; Li, X.; Tu, Y.; Yang, S.; Van Horn, R. M.; Ni, C.; Pochan, D. J.; Quirk, R. P.; Wesdemiotis, C.; Zhang, W. B.; Cheng, S. Z. D. A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J. Am. Chem. Soc. 2010, 132, 16741–16744.CrossRefGoogle Scholar
  16. 16.
    Zhang, W.; Müller, A. H. E. A “click chemistry” approach to linear and star-shaped telechelic POSS-containing hybrid polymers. Macromolecules 2010, 43, 3148–3152.CrossRefGoogle Scholar
  17. 17.
    Zhang, W.; Müller, A. H. E. Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog. Polym. Sci. 2013, 38, 1121–1162.CrossRefGoogle Scholar
  18. 18.
    Hybrid Plastics, MS0825 — Octaisobutyl POSS. Hybrid Plastics Inc.: 2017.Google Scholar
  19. 19.
    Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527–538.CrossRefGoogle Scholar
  20. 20.
    Zhou, D.; Ji, Z.; Jiang, X.; Dunphy, D. R.; Brinker, J.; Keller, A. A. Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One 2013, 8, e81239.CrossRefGoogle Scholar
  21. 21.
    Wheeler, P. A.; Misra, R.; Cook, R. D.; Morgan, S. E. Polyhedral oligomeric silsesquioxane trisilanols as dispersants for titanium oxide nanopowder. J. Appl. Polym. Sci. 2008, 108, 2503–2508.CrossRefGoogle Scholar
  22. 22.
    Surya, M. R.; Padaki, M.; Matsuura, T.; Abdullah, M. S.; Ismail, A. F. Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Sep. Purif. Technol. 2014, 132, 187–194.CrossRefGoogle Scholar
  23. 23.
    Kuvarega, A. T.; Khumalo, N.; Dlamini, D.; Mamba, B. B. Polysulfone/N, Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep. Purif. Technol. 2018, 191, 122–133.CrossRefGoogle Scholar
  24. 24.
    Guo, J.; Kim, J. Modifications of polyethersulfone membrane by doping sulfated-TiO2 nanoparticles for improving anti-fouling property in wastewater treatment. RSC Adv. 2017, 7, 33822–33828.CrossRefGoogle Scholar
  25. 25.
    Reza-E-Rabby, M.; Jeelani, S.; Rangari, V. K. Structural analysis of polyhedral oligomeric silsesquioxane coated SiC nano-particles and their applications in thermoset polymers. J. Nanomater. 2015, 2015, 13.CrossRefGoogle Scholar
  26. 26.
    Teoh, S. H.; Tang, Z. G.; Hastings, G. W., in Handbook of Bio-material Properties. Springer US, 1998, p. 590.Google Scholar
  27. 27.
    Rafiq, S.; Man, Z.; Maitra, S.; Muhammad, N.; Ahmad, F. Kinetics of thermal degradation of polysulfone/polyimide blended polymeric membranes. J. Appl. Polym. Sci. 2012, 133, 3755–3763.CrossRefGoogle Scholar
  28. 28.
    Fina, A.; Tabuani, D.; Carniato, F.; Frache, A.; Boccaleri, E.; Camino, G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim. Acta 2006, 440, 36–42.CrossRefGoogle Scholar
  29. 29.
    Song, L.; He, Q.; Hu, Y.; Chen, H.; Liu, L. Study on thermal degradation and combustion behaviors of PC/POSS hybrids. Polym. Degrad. Stab. 2008, 93, 627–639.CrossRefGoogle Scholar
  30. 30.
    Dooher, T.; Dixon, D.; McIlhagger, A. Multiwalled carbon nanotube/polysulfone composites. J. Thermoplast. Compos. Mater. 2011, 24, 499–515.CrossRefGoogle Scholar
  31. 31.
    Bras, M. L.; Wilkie, C. A.; Bourbigot, S., in Fire retardancy of polymers: New applications of mineral fillers. Royal Society of Chemistry, Cambridge, UK, 2005.Google Scholar
  32. 32.
    Liang, C. Y.; Uchytil, P.; Petrychkovych, R.; Lai, Y. C.; Friess, K.; Sipek, M.; Suen, S. Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep. Purif. Technol. 2012, 92, 57–63.CrossRefGoogle Scholar
  33. 33.
    Sadeghi, M.; Afarani, H. T.; Tarashi, Z. Preparation and investigation of the gas separation properties of polyurethane-TiO2 nanocomposite membranes. Korean J. Chem. Eng. 2015, 32, 97–103.CrossRefGoogle Scholar
  34. 34.
    Løining, V. S. Enhancement of the separation performances of high free volume polymers for CO 2 capture. Thesis, Norwegian University of Science and Technology, 2017.Google Scholar
  35. 35.
    Ghosal, K.; Freeman, B. D.; Chern, R. T.; Alvarez, J. C.; de la Campa, J. G.; Lozano, A. E.; de Abajo, J. Gas separation properties of aromatic polyamides with sulfone groups. Polymer 1995, 36, 793–800.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Grace Ying En Tan
    • 1
  • Pei Ching Oh
    • 1
    Email author
  • Kok Keong Lau
    • 1
  • Siew Chun Low
    • 2
  1. 1.CO2 Research Centre (CO2RES), Institute of Contaminant Management, Chemical Engineering DepartmentUniversiti Teknologi PETRONASSeri Iskandar, PerakMalaysia
  2. 2.School of Chemical EngineeringUniversiti Sains MalaysiaNibong Tebal, PenangMalaysia

Personalised recommendations