Synthesis of a Rod-rod Diblock Copolymer, Poly(3-hexylthiophene)-blockpoly( furfuryl isocyanate), through the Anionic Polymerization with an Oxyanionic Macroinitiator

  • Chang-Geun Chae
  • Joonkeun Min
  • In-Gyu Bak
  • Jae-Suk LeeEmail author


A rod-rod diblock copolymer (diBCP), poly(3-hexylthiophene)-block-poly(furfuryl isocyanate) (P3HT-b-PFIC), was synthesized through the anionic polymerization with an oxyanionic macroinitiator of P3HT. The properties of the diBCP (molecular weight, dispersity, composition, thermal stability, UV-visible absorption, and thin film morphology) were determined by various analytical methods. P3HT-b-PFIC was blended with C60 in a toluene solution to prepare a thin film of binary electron donor/acceptor system. Such blending enabled partial conjugation of the two components by the Diels-Alder reaction between furan and C60 at 60 °C for 3 h; the mixture was then spin-cast as a thin film, and annealed at 250 °C for 24 h. Tapping-mode atomic force microscopy (AFM) revealed that P3HT and C60 domains had nanoscale interfaces without a large phase segregation. This result indicated that the microphase separation of C60-functionalized P3HT-b-PFIC preserved even at high temperature provided free C60 molecules with channels to diffuse on the sides of P3HT domain, thus preventing the macroscopic crystallization of free C60 through the interfacial stabilization.


Rod-rod diblock copolymer Poly(3-hexylthiophene)-block-poly(furfuryl isocyanate) C60 Diels-Alder reaction Nanoscale interfaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Nos. NRF-2015R1A2A1A01002493 and NRF-2018R1A2B6003616). This work was also supported by “Nobel Research Project” grant for Grubbs Center for Polymers and Catalysis funded by the GIST in 2019.


  1. 1.
    Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258, 1474–1476.CrossRefGoogle Scholar
  2. 2.
    Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.CrossRefGoogle Scholar
  3. 3.
    Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 2001, 11, 15–26.CrossRefGoogle Scholar
  4. 4.
    Thompson, B. C.; Fréchet, J. M. J. Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 2008, 47, 58–77.CrossRefGoogle Scholar
  5. 5.
    Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 2005, 15, 1617–1622.CrossRefGoogle Scholar
  6. 6.
    Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K. Yang, Y. High-efficiency solution processable polymer photovoltaic. Nat. Mater. 2005, 4, 864–868.CrossRefGoogle Scholar
  7. 7.
    Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. T.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C. S.; Ree, M. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat. Mater. 2006, 5, 197–203.CrossRefGoogle Scholar
  8. 8.
    He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 2011, 23, 4636–4643.CrossRefGoogle Scholar
  9. 9.
    He, Z.; Zhong, C.; Su, S.; Xu, M. Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using inverted device structure. Nat. Photon. 2012, 6, 591–595.CrossRefGoogle Scholar
  10. 10.
    Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Zhi.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. Solutionprocessed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J. Am. Chem. Soc. 2013, 135, 8484–8487.CrossRefGoogle Scholar
  11. 11.
    Lu, Z.; Li, C. H.; Du, C.; Gong, X.; Bo, Z. S. 6,7-Dialkoxy-2,3- diphenylquinoxaline based conjugated polymers for solar cells with high open-circuit voltage. Chinese J. Polym. Sci. 2013, 31, 901–911.Google Scholar
  12. 12.
    Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Guan, Q.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35, 171–183.CrossRefGoogle Scholar
  13. 13.
    Hoppe, H.; Sariciftci, N. S. Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 2006, 16, 45–61.CrossRefGoogle Scholar
  14. 14.
    Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Bulk heterojunction solar cells: Morphology and performance relationships. Chem. Rev. 2014, 114, 7006–7043.CrossRefGoogle Scholar
  15. 15.
    Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Exciton diffusion and dissociation in a poly(p phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 1996, 68, 3120–3122.CrossRefGoogle Scholar
  16. 16.
    Yang, X.; van Duren, J. K.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J. Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 2004, 37, 2151–2158.CrossRefGoogle Scholar
  17. 17.
    Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K. Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photon. 2009, 3, 297–303.CrossRefGoogle Scholar
  18. 18.
    Ruderer, M. A.; Guo, S.; Meier, R.; Chiang, H. Y.; Körstgens, V.; Wiedersich, J.; Perlich, J.; Roth, S. V.; Müller-Buschbaum, P. Solvent-induced morphology in polymerbased systems for organic photovoltaics. Adv. Funct. Mater. 2011, 21, 3382–3391.CrossRefGoogle Scholar
  19. 19.
    Sun, Y.; Liu, J. G.; Ding, Y.; Han, Y. C. Controlling the surface composition of PCBM in P3HT/PCBM blend films by using mixed solvents with different evaporation rates. Chinese J. Polym. Sci. 2013, 31, 1029–1037.CrossRefGoogle Scholar
  20. 20.
    Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Efficiency enhancement in lowbandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497–500.CrossRefGoogle Scholar
  21. 21.
    Lee, J. K.; Ma, W. Li.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 2008, 130, 3619–3623.CrossRefGoogle Scholar
  22. 22.
    Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 2012, 11, 44–48.CrossRefGoogle Scholar
  23. 23.
    Chen, W. C.; Xiao, M. J.; Yang, C. P.; Duan, L. R.; Yang, R. Q. Efficient P3HT:PC61BM solar cells employing 1,2,4-trichlorobenzene as the processing additives. Chinese J. Polym. Sci. 2017, 35, 302–308.CrossRefGoogle Scholar
  24. 24.
    Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 2003, 13, 85–88.CrossRefGoogle Scholar
  25. 25.
    Erb, T.; Zhokhavets, U.; Gobsch, G.; Raleva, S.; Stühn, B.; Schilinsky, P.; Waldauf, C.; Brabec, C. J. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 2005, 15, 1193–1196.CrossRefGoogle Scholar
  26. 26.
    Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005, 5, 579–583.CrossRefGoogle Scholar
  27. 27.
    Mihailetchi, V. D.; Xie, H.; de Boer, B.; Popescu, L. M.; Hulmmelen, J. C.; Blom, P. W. M.; Koster, L. J. A. Origin of the enhanced performance in poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Appl. Phys. Lett. 2006, 89, 012107.CrossRefGoogle Scholar
  28. 28.
    Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv. Funct. Mater. 2007, 17, 1636–1644.CrossRefGoogle Scholar
  29. 29.
    Yassar, A.; Miozzo, L.; Gironda, R.; Horowitz, G. Rod-coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 2013, 38, 791–844.CrossRefGoogle Scholar
  30. 30.
    Dai, C. A.; Yen, W. C.; Lee, Y. H.; Ho, C. C.; Su, W. F. Facile synthesis of well-defined block copolymers containing regioregular poly(3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior. J. Am. Chem. Soc. 2007, 129, 11036–11038.CrossRefGoogle Scholar
  31. 31.
    Gholamkhass, B.; Holdcroft, S. Toward stabilization of domains in polymer bulk heterojunction films. Chem. Mater. 2010, 22, 5371–5376.CrossRefGoogle Scholar
  32. 32.
    Dante, M.; Yang, C.; Walker, B.; Wudl, F.; Nguyen, T. Q. Self assembly and chargetransport properties of a polythiophenefullerene triblock copolymer. Adv. Mater. 2010, 22, 1835–1839.CrossRefGoogle Scholar
  33. 33.
    Hiorns, R. C.; Cloutet, E.; Ibarboure, E.; Khoukh, A.; Bejbouji, H.; Vignau, L.; Cramail, H. Synthesis of donor-acceptor multiblock copolymers incorporating fullerene backbone repeat units. Macromolecules 2010, 43, 6033–6044.CrossRefGoogle Scholar
  34. 34.
    Sivula, K.; Ball, Z. T.; Watanabe, N.; Fréchet, J. M. J. Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene: Fullerene solar cells. Adv. Mater. 2006, 18, 206–210.CrossRefGoogle Scholar
  35. 35.
    Yang, C.; Lee, J. K.; Heeger, A. J.; Wudl, F. Well-defined donor-acceptor rod-coil diblock copolymers based on P3HT containing C60: The morphology and role as a surfactant in bulk-heterojunction solar cells. J. Mater. Chem. 2009, 19, 5416–5423.CrossRefGoogle Scholar
  36. 36.
    Heuken, M.; Komber, H.; Erdmann, T.; Senkovskyy, V.; Kiriy, A.; Voit, B. Fullerene-functionalized donor-acceptor block copolymers through etherification as stabilizers for bulk heterojunction solar cells. Macromolecules 2012, 45, 4101–4114.CrossRefGoogle Scholar
  37. 37.
    Sary, N.; Richard, F.; Brochon, C.; Leclerc, N.; Lévêque, P.; Audinot, J. N.; Berson, S.; Heiser, T.; Hadzniioannou, G.; Mezzenga, R. A new supramolecular route for using rodcoil block copolymers in photovoltaic applications. Adv. Mater. 2010, 22, 763–768.CrossRefGoogle Scholar
  38. 38.
    Renaud, C.; Mougnier, S. J.; Pavlopoulou, E.; Brochon, C.; Fleury, G.; Deribew, D.; Portale, G.; Cloutet, E.; Chambon, S.; Vignau, L.; Hadziioannou, G. Block copolymer as a nanostructuring agent for high-efficiency and annealing-free bulk heterojunction organic solar cells. Adv. Mater. 2012, 24, 2196–2201.CrossRefGoogle Scholar
  39. 39.
    Gernigon, V.; Lévêque, P.; Richard, F.; Leclerc, N.; Brochon, C.; Braun, C. H.; Ludwigs, S.; Anokhin, D. V.; Ivanov, D. A.; Hadziioannou, G.; Heiser, T. Microstructure and optoelectronic properties of P3HT-b-P4VP/PCBM blends: Impact of PCBM on the copolymer self-assembly. Macromolecules 2013, 46, 8824–8831.CrossRefGoogle Scholar
  40. 40.
    Laiho, A.; Ras, R. H. A.; Valkama, S.; Ruokolainen, J.; Österbacka, R.; Ikkala, O. Control of self-assembly by charge-transfer complexation between C60 fullerene and electron donating units of block copolymers. Macromolecules 2006, 39, 7648–7653.CrossRefGoogle Scholar
  41. 41.
    Chan S. H.; Lai, C. S.; Chen, H. L.; Ting, C.; Chen, C. P. Highly efficient P3HT:C60 solar cell free of annealing process. Macromolecules 2011, 44, 8886–8891.CrossRefGoogle Scholar
  42. 42.
    Yang, X.; Lu, G.; Li, L.; Zhou, E. Nanoscale phaseaggregation induced performance improvement of polymer solar cells. Small 2007, 3, 611–615.CrossRefGoogle Scholar
  43. 43.
    Guhr, K. I.; Greaves, M. D.; Rotello, V. M. Reversible covalent attachment of C60 to a polymer support. J. Am. Chem. Soc. 1994, 116, 5997–5998.CrossRefGoogle Scholar
  44. 44.
    Nie, B.; Hansan, K.; Greaves, M. D.; Rotello, V. M. Reversible covalent attachment of C60 to a furan-functionalized resin. Tetrahedron Lett. 1995, 36, 3617–3618.CrossRefGoogle Scholar
  45. 45.
    Gheneim, R.; Perez-Berumen, C.; Gandini, A. Diels-Alder reactions with novel polymeric dienes and dienophiles: Synthesis of reversibly cross-linked elastomers. Macromolecules 2002, 35, 7246–7253.CrossRefGoogle Scholar
  46. 46.
    Zuen, H.; Gandini, A. Crystalline furanic polyisocyanates. Polym. Bull. 1991, 26, 383–390.CrossRefGoogle Scholar
  47. 47.
    Wu, Z. Q.; Ono, R. J.; Chen, Z.; Li, Z.; Bielawski, C. W. Polythiophene- block-poly(γ-benzyl L-glutamate): Synthesis and study of a new rod-rod block copolymer. Polym. Chem. 2011, 2, 300–302.CrossRefGoogle Scholar
  48. 48.
    Bhatt, M. P.; Du, J.; Rainbolt, E. A.; Pathiranage, T. M. S. K.; Huang, P.; Reuther, J. F.; Novak, B. M.; Biewer, M. C.; Stefan, M. C. A semiconducting liquid crystalline block copolymer containing regioregular poly(3-hexylthiophene) and nematic poly(n-hexyl isocyanate) and its application in bulk heterojunction solar cells. J. Mater. Chem. A 2014, 2, 16148–16156.CrossRefGoogle Scholar
  49. 49.
    Zhou, L.; Jiang, Z. Q.; Xu, L.; Liu, N.; Wu, Z. Q. Polythiophene- block-poly(phenyl isocyanide) copolymers: One-pot synthesis, properties and applications. Chinese J. Polym. Sci. 2017, 35, 1447–1456.CrossRefGoogle Scholar
  50. 50.
    Bur, A. J.; Fetters, L. J. The chain structure, polymerization, and conformation of polyisocyanates. Chem. Rev. 1976, 76, 727–746.CrossRefGoogle Scholar
  51. 51.
    Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical polymers: Synthesis, structures, and functions. Chem. Rev. 2009, 109, 6102–6211.CrossRefGoogle Scholar
  52. 52.
    Mayer, S.; Zentel, R. Chiral polyisocyanates, a special class of helical polymers. Prog. Polym. Sci. 2001, 26, 1973–2013.CrossRefGoogle Scholar
  53. 53.
    Chae, C. G.; Seo, H. B.; Lee, J. S., Living anionic polymerization of isocyanates. In Anionic polymerization: Principles, practice, strength, consequences and applications, Hadjichristidis, N.; Hirao, A., Eds., Springer, Japan, 2015, pp. 339–386.CrossRefGoogle Scholar
  54. 54.
    Shin, Y. D.; Kim, S. Y.; Ahn, J. H.; Lee, J. S. Synthesis of poly(n-hexyl isocyanate) by controlled anionic polymerization in the presence of NaBPh4. Macromolecules 2001, 34, 2408–2410.CrossRefGoogle Scholar
  55. 55.
    Min, J.; Shah, P. N.; Ahn, J. H.; Lee, J. S. Effects of different reactive oxyanionic initiators on the anionic polymerizaition of n-hexyl isocyanate. Macromolecules 2011, 44, 3211–3216.CrossRefGoogle Scholar
  56. 56.
    Shah, P. N.; Min, J.; Chae, C. G.; Nishikawa, N.; Suemasa, D.; Kakuchi, T.; Satoh, T.; Lee, J. S. “Helicity inversion”: Linkage effects of chiral poly(n-hexyl isocyanate)s. Macromolecules 2012, 45, 8961–8967.CrossRefGoogle Scholar
  57. 57.
    Min, J.; Shah, P. N.; Chae, C. G.; Lee, J. S. Arrangement of C60 via the selfassembly of postfunctionalizable polyisocyanate block copolymer. Macromol. Rapid Commun. 2012, 33, 2029–2034.CrossRefGoogle Scholar
  58. 58.
    Min, J.; Yoo, H. S.; Shah, P. N.; Chae, C. G.; Lee, J. S. Enolate anionic initiator, sodium deoxybenzoin, for leading living natures by formation of aggregators at the growth chain ends. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1742–1748.CrossRefGoogle Scholar
  59. 59.
    Chae, C. G.; Shah, P. N.; Min, J.; Seo, H. B.; Lee, J. S. Synthesis of novel amphiphilic polyisocyanate block copolymer with hydroxyl side group. Macromolecules 2014, 47, 1563–1569.CrossRefGoogle Scholar
  60. 60.
    Shah, P. N.; Chae, C. G.; Min, J.; Shimada, R.; Satoh, T.; Kakuchi, T.; Lee, J. S. A model chiral graft copolymer demonstrates evidence of the transmission of stereochemical information from the side chain to the main chain on a nanometer scale. Macromolecules 2014, 47, 2796–2802.CrossRefGoogle Scholar
  61. 61.
    Jang Y. H.; Lansac, Y.; Kim, J. K.; Yoo, H. S.; Chae, C. G.; Choi, C. H.; Samal, S.; Lee, J. S. Dual function of a living polymerization initiator through the formation of a chain-end-protecting cluster: Density functional theory calculation. Phys. Chem. Chem. Phys. 2014, 16, 24929–24935.CrossRefGoogle Scholar
  62. 62.
    Chae, C. G.; Shah, P. N.; Min, J.; Yu, Y. G.; Lee, J. S. Anionic polymerization of reactive 3-chloropropyl isocyanate. Macromol. Symp. 2015, 349, 85–93.CrossRefGoogle Scholar
  63. 63.
    Chae, C. G.; Seo, H. B.; Bak, I. G.; Lee, J. S. Synthesis of amphiphilic helix-coil-helix poly(3-(glycerylthio)propyl isocyanate)- block-polystyrene-block-poly(3-(glycerylthio)propyl isocyanate). Macromolecules 2018, 51, 697–704.CrossRefGoogle Scholar
  64. 64.
    Chae, C. G.; Bak, I. G.; Lee, J. S. Fundamental kinetics of living anionic polymerization of isocyanates emerging by the sodium diphenylmethane-mediated initiation. Macromolecules 2018, 51, 6771–6781.CrossRefGoogle Scholar
  65. 65.
    Chae, C. G.; Bak, I. G.; Lee, J. S. Propagation-inspired initiation of an aliphatic sodium amidate for the living anionic homo- and copolymerization of isocyanates: Access to the multiblocky sequence distribution of binary comonomers. Macromolecules 2018, 51, 10083–10094.CrossRefGoogle Scholar
  66. 66.
    Sheina, E. E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough, R. D. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules 2004, 37, 3526–3528.CrossRefGoogle Scholar
  67. 67.
    Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Catalyst-transfer polycondensation. Mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene). J. Am. Chem. Soc. 2005, 127, 17542–17547.CrossRefGoogle Scholar
  68. 68.
    Yuan, K.; Li, F.; Chen, Y.; Wang, X.; Chen, L. In situ growth nanocomposites composed of rodlike ZnO nanocrystals arranged by nanoparticles in a self-assembling diblock copolymer for heterojunction optoelectronics. J. Mater. Chem. 2011, 21, 11886–11894.Google Scholar
  69. 69.
    Jeffries-EL, M.; Sauvé, G.; McCullough, R. D. In situ endgroup functionalization of regioregular poly(3-alkylthiophene) using the Grignard metathesis polymerization method. Adv. Mater. 2004, 16, 1017–1019.CrossRefGoogle Scholar
  70. 70.
    Jeffries-EL, M.; Sauvé, G.; McCullough, R. D. Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified grignard metathesis reaction. Macromolecules 2005, 38, 10346–10352.CrossRefGoogle Scholar
  71. 71.
    Higashihara, T.; Ueda, M. Synthesis and characterization of a novel coil-rod-coil triblock copolymers comprised of regioregular poly(3-hexylthiophene) and poly(methyl methacrylate) segments. React. Funct. Polym. 2009, 69, 457–462.CrossRefGoogle Scholar
  72. 72.
    Higashihara, T.; Liu, C. L.; Chen, W. C.; Ueda, M. Synthesis of novel p-conjugated rod-rod-rod triblock copolymers containing poly(3-hexylthiophene) and polyacetylene segments by combination of quasi-living grim and living anionic polymerization. Polymers 2011, 3, 236–251.CrossRefGoogle Scholar
  73. 73.
    Iwakura, Y.; Uno, K.; Kobayashi, N. Polymerization of isocyanates. V. Thermal degradation of polyisocyanates. J. Polym. Sci., Part A: Polym. Chem. 1968, 6, 2611–2620.CrossRefGoogle Scholar
  74. 74.
    Durairaj, B.; Dimock, A. W.; Samulski, E. T.; Shaw, M. T. Investigation of the thermal degradation of alkyl isocyanate polymers by direct pyrolysis mass spectrometry. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 3211–3225.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chang-Geun Chae
    • 1
  • Joonkeun Min
    • 1
  • In-Gyu Bak
    • 1
  • Jae-Suk Lee
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea

Personalised recommendations