Self-healing Behavior of Ethylene Propylene Diene Rubbers Based on Ionic Association

  • Zhi-Fei Zhang
  • Kun YangEmail author
  • Shu-Gao ZhaoEmail author
  • Lai-Na Guo


To meet the increasing demand for safe, environmentally friendly and high-performance smart materials, self-healing rubbers are highly desired. Here, the self-healing performance of ethylene propylene diene monomer rubber (EPDM) is reported, which was designed by graft-polymerization of zinc dimethacrylate (ZDMA) onto rubber chains to form a reversible ionic cross-linked network. Single ionic cross-linked network and dual network, combining covalent and ionic cross-links, could be tuned by controlling vulcanization process to achieve tailorable mechanical and self-healing properties. It was found that ionic cross-linked EPDM showed a recovery of more than 95% of the original mechanical strength through a healing process of 1 h at 100 °C. The covalent cross-links could improve mechanical properties but block self-healing. Adding 50 wt% liquid rubber to “dry” EPDM could effectively enhance self-healing capability of the dual cross-linked network and the healed tensile strength could reach 0.9 MPa. A compromise between mechanical performance and healing capability could be potentially tailored by controlling vulcanization process and liquid rubber content.


Ionic bond Self-healing Ethylene propylene diene rubber Dual-network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Basic Research Program of China (Nos. 2015CB654700 and 2015CB654706), the National Natural Science Foundation of China (No. 51403115), and the Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics of Qingdao University of Science & Technology (KF2017008). We are also grateful for the support from Hutchinson.

Supplementary material

10118_2019_2241_MOESM1_ESM.pdf (658 kb)
Self-healing Behavior of Ethylene Propylene Diene Rubbers Based on Ionic Association


  1. 1.
    Vèlez, J. S.; Velásquez, S.; Giraldo, D. Mechanical and rheometric properties of gilsonite/carbon black/natural rubber compounds cured using conventional and efficient vulcanization systems. Polym. Test. 2016, 56: 1–9.CrossRefGoogle Scholar
  2. 2.
    Hosseini, S. M.; Razzaghi-Kashani, M. On the role of nanosilica in the kinetics of peroxide vulcanization of ethylene propylene diene rubber. Polymer, 2017, 133, 8–19.CrossRefGoogle Scholar
  3. 3.
    Movahed, S. O.; Ansarifar, A.; Zohuri, G.; Ghaneie, N.; Kermany, Y. Devulcanization of ethylene-propylene-diene waste rubber by microwaves and chemical agents. J. Elastomer Plast. 2014, 48, 122–144.CrossRefGoogle Scholar
  4. 4.
    Yu, B. C.; Jung, J. W.; Park, K.; Goodenough, J. B. A new approach for recycling waste rubber products in Li-S batteries. Energ. Environ. Sci. 2017, 10, 86–90.CrossRefGoogle Scholar
  5. 5.
    Molanorouzi, M.; Mohaved, S. O. Reclaiming waste tire rubber by an irradiation technique. Polym. Degrad. Stab. 2016, 128, 115–125.CrossRefGoogle Scholar
  6. 6.
    Keller, M. W.; White, S. R.; Sottos, N. R. A self-healing poly(dimethyl siloxane) elastomer. Adv. Funct. Mater. 2007, 17, 2399–2404.CrossRefGoogle Scholar
  7. 7.
    Chowdhury, R. A.; Hosur, M. V.; Nuruddin, M.; Tcherbi-Narteh, A.; Kumar, A.; Boddu, V.; Jeelani, S. Self-healing epoxy composites: Preparation, characterization and healing performance. J. Mater. Res. Technol. 2015, 4, 33–43.CrossRefGoogle Scholar
  8. 8.
    Pepels, M.; Filot, I.; Klumperman, B.; Goossens, H. Self-healing systems based on disulfide-thiol exchange reactions. Polym. Chem. 2013, 4, 4955–11.CrossRefGoogle Scholar
  9. 9.
    Guo, Y. K.; Li, H.; Zhao, P. X.; Wang, X. F.; Astruc, D.; Shuai, M. B. Thermo-reversible MWCNTs/epoxy polymer for use in self-healing and recyclable epoxy adhesive. Chinese J. Polym. Sci. 2017, 35, 728–738.CrossRefGoogle Scholar
  10. 10.
    Kang, J.; Son, D.; Wang, G. J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B. H.; Bao, Z. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 15, 1706846.CrossRefGoogle Scholar
  11. 11.
    Liu, X.; Lu, C.; Wu, X.; Zhang, X. Self-healing strain sensors based on nanostructured supramolecular conductive elastomers. J. Mater. Chem. A 2017, 5, 9824–9832.CrossRefGoogle Scholar
  12. 12.
    Luan, Y. G.; Zhang, X. A.; Jiang, S. L.; Chen, J. H.; Lyu, Y. F. Self-healing supramolecular polymer composites by hydrogen bonding interactions between hyperbranched polymer and graphene oxide. Chinese J. Polym. Sci. 2018, 36, 584–591.CrossRefGoogle Scholar
  13. 13.
    Liu, J.; Liu, J.; Wang, S.; Huang, J.; Wu, S.; Tang, Z.; Guo, B.; Zhang, L. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability. J. Mater. Chem. A 2017, 5, 25660–25671.CrossRefGoogle Scholar
  14. 14.
    Jia, X. Y.; Mei, J. F.; Lai, J. C.; Li, C. H.; You, X. Z. A highly stretchable polymer that can be thermally healed at mild temperature. Macromol. Rapid Commun. 2016, 37, 952–956.CrossRefGoogle Scholar
  15. 15.
    Rahman, M. A.; Penco, M.; Peroni, I.; Ramorino, G.; Grande, A. M.; Di Landro, L. Self-repairing systems based on ionomers and epoxidized natural rubber blends. ACS Appl. Mater. Interfaces 2011, 3, 4865–4874.CrossRefGoogle Scholar
  16. 16.
    García-Huete, N.; Post, W.; Laza, J. M.; Vilas, J. L.; León, L. M.; García, S. J. Effect of the blend ratio on the shape memory and self-healing behaviour of ionomer-polycyclooctene cross-linked polymer blends. Eur. Polym. J. 2018, 98, 154–161.CrossRefGoogle Scholar
  17. 17.
    Das, A.; Sallat, A.; Böhme, F.; Suckow, M.; Basu, D.; Wießner, S.; Stöckelhuber, K. W.; Voit, B.; Heinrich, G. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 2015, 7, 20623–20630.CrossRefGoogle Scholar
  18. 18.
    Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624.CrossRefGoogle Scholar
  19. 19.
    Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4, 467–472.CrossRefGoogle Scholar
  20. 20.
    Kalista, S. J., Jr.; Ward, T. C.; Oyetunji, Z. Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech. Adv. Mater. Struc. 2007, 14, 391–397.CrossRefGoogle Scholar
  21. 21.
    Zhong, M.; Liu, Y. T.; Xie, X. M. Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J. Mater. Chem. B 2015, 3, 4001–4008.CrossRefGoogle Scholar
  22. 22.
    Xu, C.; Cao, L.; Lin, B.; Liang, X.; Chen, Y. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl. Mater. Interfaces 2016, 8, 17728–17737.CrossRefGoogle Scholar
  23. 23.
    Zhang, J.; Huo, M.; Li, M.; Li, T.; Li, N.; Zhou, J.; Jiang, J. Shape memory and self-healing materials from supramolecular block polymers. Polymer 2018, 134, 35–43.CrossRefGoogle Scholar
  24. 24.
    Miwa, Y.; Kurachi, J.; Kohbara, Y.; Kutsumizu, S. Dynamic ionic cross-links enable high strength and ultrastretchability in a single elastomer. Commun. Chem. 2018, 1, 5.CrossRefGoogle Scholar
  25. 25.
    Peng, Z.; Liang, X.; Zhang, Y.; Zhang, Y. Reinforcement of EPDM by in situ prepared zinc dimethacrylate. J. Appl. Polym. Sci. 2002, 84, 1339–1345.CrossRefGoogle Scholar
  26. 26.
    Nie, Y.; Huang, G.; Qu, L.; Zhang, P.; Weng, G.; Wu, J. Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate. J. Appl. Polym. Sci. 2010, 115, 99–106.CrossRefGoogle Scholar
  27. 27.
    Chen, Y.; Xu, C. Cross-link network evolution of nature rubber/zinc dimethacrylate composite during peroxide vulcanization. Polym. Compos. 2011, 32, 1505–1514.CrossRefGoogle Scholar
  28. 28.
    Xu, C.; Huang, X.; Li, C.; Chen, Y.; Lin, B.; Liang, X. Design of “Zn2+ salt-bondings” cross-linked carboxylated styrene butadiene rubber with reprocessing and recycling ability via rearrangements of ionic cross-linkings. ACS Sustain. Chem. Eng. 2016, 4, 6981–6990.CrossRefGoogle Scholar
  29. 29.
    Xu, C.; Cao, L.; Huang, X.; Chen, Y.; Lin, B.; Fu, L. Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network. ACS Appl. Mater. Interfaces 2017, 9, 29363–29373.CrossRefGoogle Scholar
  30. 30.
    Wang, D.; Guo, J.; Zhang, H.; Cheng, B.; Shen, H.; Zhao, N.; Xu, J. Intelligent rubber with tailored properties for self-healing and shape memory. J. Mater. Chem. A 2015, 3, 12864–12872.CrossRefGoogle Scholar
  31. 31.
    Cao, L.; Huang, J.; Chen, Y. Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility. ACS Sustain. Chem. Eng. 2018, 6, 14802–14811.CrossRefGoogle Scholar
  32. 32.
    Xu, C.; Cui, R.; Fu, L.; Lin, B. Recyclable and heat-healable epoxidized natural rubber/bentonite composites. Compos. Sci. Technol. 2018, 167, 421–430.CrossRefGoogle Scholar
  33. 33.
    Flory, P. J. Statistical mechanics of swelling of network structures. J. Chem. Phys. 1950, 18, 108–111.CrossRefGoogle Scholar
  34. 34.
    Bala, P.; Samantaray, B. K.; Srivastava, S. K.; Nando, G. B. Organomodified montmorillonite as filler in natural and synthetic rubber. J. Appl. Polym. Sci. 2004, 92, 3583–3592.CrossRefGoogle Scholar
  35. 35.
    Liu, X. Y.; Zhong, M.; Shi, F. K.; Xu, H.; Xie, X. M. Multibond network hydrogels with robust mechanical and self-healable properties. Chinese J. Polym. Sci. 2017, 35, 1253–1267.CrossRefGoogle Scholar
  36. 36.
    Yarmohammadi, M.; Shahidzadeh, M.; Ramezanzadeh, B. Designing an elastomeric polyurethane coating with enhanced mechanical and self-healing properties- the influence of disulfide chain extender. Prog. Org. Coat. 2018, 121, 45–52.CrossRefGoogle Scholar
  37. 37.
    Wool, R. P.; O’Connor, K. M. A theory crack healing in polymers. J. Appl. Phys. 1981, 52, 5953–5963.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Rubber-plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-PlasticsQingdao University of Science & TechnologyQingdaoChina
  2. 2.College of Chemical Engineering and Materials ScienceTianjin University of Science & TechnologyTianjinChina
  3. 3.Hutchinson, research centerChalette sur LoingFrance

Personalised recommendations