Poly(1-vinylimidazole) Prospects in Gene Delivery

  • Elena N. Danilovtseva
  • Stanislav N. Zelinskiy
  • Viktor A. Pal’shin
  • Gayathri Kandasamy
  • Uma Maheswari Krishnan
  • Vadim V. AnnenkovEmail author


Polymeric amines are being studied intensively as components of systems for gene delivery in genetic engineering and gene therapy of genetic disorders, including cancer. Despite remarkable achievements in the field, polymeric amines, such as polyethyleneimine, show some disadvantages. Strong interaction between the amine-containing polymer and nucleic acid hampers the release of nucleic acid in the cell cytoplasm. Amine groups can interact with the cell membrane which results in cell death. These limitations of polymeric amines stimulated an investigation of new structures for gene delivery. Imidazole-containing polymers have attracted attention as lesser basic substances, while they are able to interact with polymeric acids. Further development of imidazole-based gene delivery agents requires knowledge about some fundamental aspects of interaction between nucleic acids, and polymeric imidazoles. In this work, we studied the complexation of poly(1-vinylimidazole) and oligomeric DNA. We found that the number of active sites capable of binding with negatively charged phosphate groups is comparable with the number of protonated imidazole units in the case of high molecular weight polymer. The increase in polymer charge by 1-bromopropane quaternizating 1%−5% imidazole units or by decreasing the pH to 6.5−7 considerably increased the ability of poly(1-vinylimidazole) to interact with oligonucleotides. The pH sensitivity of this interaction is interesting for cancer gene therapy because the tumours have a lowered intercellular pH (stable oligonucleotide complex) and a higher extracellular pH which can lead to complex dissociation. Minimal critical length for complexation of quaternized poly(1-vinylimidazole) and DNA is below eight units which corresponds to polymers with amine groups. Fluorescence-tagged poly(1-vinylimidazole) samples were obtained and their potential for monitoring the polymer and polymer-oligonucleotide complex internalization into living cells was demonstrated.


Polymeric amines Oligonucleotides Fluorescence Poly(1-vinylimidazole) Gene delivery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the financial support from a joint grant of the Russian Science Foundation (16-45-02001) and the Department of Science Technology of the Ministry of Science and Technology of the Republic of India (INT/RUS/RSF/10).

Supplementary material

10118_2019_2240_MOESM1_ESM.pdf (196 kb)
Poly(1-vinylimidazole) Prospects in Gene Delivery


  1. 1.
    Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D. A.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. 1995, 92, 7297–7301.CrossRefGoogle Scholar
  2. 2.
    Fischera, D.; Lib, Y.; Ahlemeyerc, B.; Krieglsteinc, J.; Kissel, T. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials 2003, 24, 1121–1131.CrossRefGoogle Scholar
  3. 3.
    Miao, H.; Wang, Y. F.; Dong, H. Y.; Chen, D. Y. Complexation induced by weak interaction between DNA and PEO-b- P4VP below the CMC of the polymer. Chinese J. Polym. Sci. 2017, 35, 46–53.CrossRefGoogle Scholar
  4. 4.
    Annenkov, V. V.; Danilovtseva, E. N.; Saraev, V. V.; Mikhaleva, A. I. Complexation of copper(II) ions with imidazolecarboxylic polymeric systems. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2256–2263.CrossRefGoogle Scholar
  5. 5.
    Asayama, S.; Sekine, T.; Kawakami, H.; Nagaoka, S. Design of aminated poly(1-vinylimidazole) for a new pH-sensitive polycation to enhance cell-specific gene delivery. Bioconjugate Chem. 2007, 18, 1662–1667.CrossRefGoogle Scholar
  6. 6.
    Dulea, M.; Biswasa, M.; Biswasa, Y.; Mandal, K.; Jana, N. R.; Mandal, T. K. Cysteine-based amphiphilic peptide-polymer conjugates via thiol-mediated radical polymerization: Synthesis, self-assembly, RNA polyplexation and N-terminus fluorescent labeling for cell imaging. Polymer 2017, 112, 125–135.CrossRefGoogle Scholar
  7. 7.
    Ihm, J. E.; Han, K. O.; Han, I. K.; Ahn, K. D.; Han, D. K.; Cho, C. S. High transfection efficiency of poly(4-vinylimidazole) as a new gene carrier. Bioconjugate Chem. 2003, 14, 707–708.CrossRefGoogle Scholar
  8. 8.
    Ihm, J. E.; Han, K. O.; Hwang, C. S.; Kang, J. H.; Ahn, K. D.; Han, I. K.; Han, D. K.; Hubbell, J. A.; Cho, C. S. Poly(4- vinylimidazole) as nonviral gene carrier: In vitro and in vivo transfection. Acta Biomater. 2005, 1, 165–172.CrossRefGoogle Scholar
  9. 9.
    Asayama, S.; Nishinohara, S.; Kawakami, H. Zinc-chelated imidazole groups for DNA polyion complex formation. Metallomics 2011, 680–682.Google Scholar
  10. 10.
    Asayama, S.; Matsuda, K.; Negishiband, Y.; Kawakami, H. Intracellular co-delivery of zinc ions and plasmid DNA for enhancing gene transfection activity. Metallomics 2014, 6, 82–87.CrossRefGoogle Scholar
  11. 11.
    Asayama, S.; Hakamatani, T.; Kawakami, H. Synthesis and characterization of alkylated poly(1-vinylimidazole) to control the stability of its DNA polyion complexes for gene delivery. Bioconjugate Chem. 2010, 21, 646–652.CrossRefGoogle Scholar
  12. 12.
    Shuai, X.; Merdan, T.; Unger, F.; Kissel, T. Supramolecular gene delivery vectors showing enhanced transgene expression and good biocompatibility. Bioconjugate Chem. 2005, 16, 322–329.CrossRefGoogle Scholar
  13. 13.
    Pouton, C. W.; Lucas, P.; Thomas, B. J.; Uduehi, A. N.; Milroy, D. A.; Moss, S. H. Polycation-DNA complexes for gene delivery: A comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J. Control. Release 1998, 53, 289–299.CrossRefGoogle Scholar
  14. 14.
    Asayama, S.; Seno, K.; Kawakami, H. Synthesis of carboxymethyl poly(1-vinylimidazole) as a polyampholyte for biocompatibility. Chem. Lett. 2013, 42, 358–360.CrossRefGoogle Scholar
  15. 15.
    Allen, M. H.; Day, K. N.; Hemp, S. T.; Long, T. E. Synthesis of folic acid-containing imidazolium copolymers for potential gene delivery applications. Macromol. Chem. Phys. 2013, 214, 797–805.CrossRefGoogle Scholar
  16. 16.
    Asayama, S.; Nishinohara, S.; Kawakami, H. Zinc-chelated poly(1-vinylimidazole) and a carbohydrate ligand polycation form DNA ternary complexes for gene delivery. Bioconjugate Chem. 2011, 22, 1864–1868.CrossRefGoogle Scholar
  17. 17.
    Dréan, M.; Debuigne, A.; Jérôme, C.; Goncalves, C.; Midoux, P.; Rieger, J.; Guégan, P. Poly(N-methylvinylamine)-based copolymers for improved gene transfection. Macromol. Biosci. 2018, 1700353.Google Scholar
  18. 18.
    Pack, D. W.; Putnam, D.; Langer, R. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol Bioeng. 2000, 67, 217–23.CrossRefGoogle Scholar
  19. 19.
    Sakurai, M.; Imai, T.; Yamashita, F. Temperature dependence of viscosities and potentiometric titration behavior of poly(nvinylimidazole) in aqueous salt solutions. Polym. J. 1994, 26, 658–664.CrossRefGoogle Scholar
  20. 20.
    Annenkov, V. V.; Danilovtseva, E. N.; Likhoshway, Y. V.; Patwardhanand, S. V.; Perry, C. C. Controlled stabilisation of silicic acid below pH 9 using poly(1-vinylimidazole). J. Mater. Chem. 2008, 18, 553–559.CrossRefGoogle Scholar
  21. 21.
    Eskin, V. E.; Magarik, S. Y.; Zhuraev, U. B.; Rudkovskaya, G. D. Light-scattering, viscosity and dynamic birefringence of poly-normal-vinylimidazole solutions. Vysokomol. Soedin., Ser. A 1978, 20, 2219–2223.Google Scholar
  22. 22.
    Du, X. L.; Zhang, H. S.; Deng, Y. H.; Wang, H. Design and synthesis of a novel fluorescent reagent, 6-oxy-(ethylpiperazine)- 9-(2-methoxycarbonyl) fluorescein, for carboxylic acids and its application in food samples using high-performance liquid chromatography. J. Chromatogr. A 2008, 1178, 92–100.CrossRefGoogle Scholar
  23. 23.
    Zelinskiy, S. N.; Danilovtseva, E. N.; Pal'shin, V. A.; Krishnan, U. M.; Annenkov, V. V. Reagents for labeling with pH-independent fluorescein-based tags. Arkivoc 2018, vii.Google Scholar
  24. 24.
    Mazyar, N. L.; Annenkov, V. V.; Kruglova, V. A.; Ananiev, S. M.; Danilotseva, E. N.; Rokhin, A. V.; Zinchenko, S. V. Acidbase properties of poly(1-vinylazoles) in aqueous solution. Russ. Chem. Bull. 2000, 4912, 2013–2017.CrossRefGoogle Scholar
  25. 25.
    Sandeli, E. B.; West, T. S. Recommended nomenclature for titrimetric analysis. Pure Appl. Chem. 1969, 18, 427–436.Google Scholar
  26. 26.
    Henrichs, P. M.; Whitlock, L. R.; Sochor, A. R.; Tan, J. S. Conformational behavior of poly(n-vinylimidazole)-potentiometric titration, viscosity, and proton nuclear magnetic resonance studies. Macromolecules 1980, 13, 1375–1381.CrossRefGoogle Scholar
  27. 27.
    Annenkov, V. V.; Danilovtseva, E. N.; Tenhu, H.; Aseyev, V.; Hirvonen, S. P.; Mikhaleva, A. I. Copolymers of 1-vinylimidazole and (meth)acrylic acid: Synthesis and polyelectrolyte properties. Eur. Polym. J. 2004, 40, 1027–1032.CrossRefGoogle Scholar
  28. 28.
    Annenkov, V. V.; Krishnan, U. M.; Pal'shin, V. A.; Zelinskiy, S. N.; Kandasamy, G.; Danilovtseva, E. N. Design of the oligonucleotide carriers: Importance of polyamine chain length. Polymers 2018, 10, 1297.CrossRefGoogle Scholar
  29. 29.
    Basché, T.; Müllen, K.; Schmidt, M. From single molecules to nanoscopically structured materials. Adv. Polym. Sci. 2014, 260, 1–288.Google Scholar
  30. 30.
    Yoshikawa, K. Controlling the higher-order structure of giant DNA molecules. Adv. Drug Deliv. Rev. 2001, 52, 235–244.CrossRefGoogle Scholar
  31. 31.
    Tsuchida, E.; Abe, K. Interactions between macromolecules in solution and intermacromolecular complexes. Adv. Polym. Sci. 1982, 45, 15–130.Google Scholar
  32. 32.
    Shirmanova, M. V.; Druzhkova, I. N.; Lukina, M. M.; Matlashov, M. E.; Belousov, V. V.; Snopova, L. B.; Prodanetz, N.; Dudenkova, V. V.; Lukyanov, S. A.; Zagaynova, E. V. Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2. Biochim. Biophys. Acta 2015, 1850, 1905–1911.CrossRefGoogle Scholar
  33. 33.
    Heiden, M. G. V.; Cantley, L. C.; Thompson, C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033.CrossRefGoogle Scholar
  34. 34.
    Lu, Z. N.; Tian, B.; Guo, X. L. Repositioning of proton pump inhibitors in cancer therapy. Cancer Chemother Pharmacol. 2017, 80, 925–937.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Elena N. Danilovtseva
    • 1
  • Stanislav N. Zelinskiy
    • 1
  • Viktor A. Pal’shin
    • 1
  • Gayathri Kandasamy
    • 2
  • Uma Maheswari Krishnan
    • 2
  • Vadim V. Annenkov
    • 1
    Email author
  1. 1.Limnological Institute of the Siberian Branch of the Russian Academy of SciencesIrkutskRussia
  2. 2.Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and BiotechnologySASTRA UniversityThanjavurIndia

Personalised recommendations