Advertisement

Diffusion Mode Transition between Gaussian and Non-Gaussian of Nanoparticles in Polymer Solutions

  • Yi Ye
  • Han Qin
  • Ming TianEmail author
  • Jian-Guo MiEmail author
Article
  • 9 Downloads

Abstract

The dynamic density functional theory is applied to study the diffusion of nanoparticles in polymer solutions, in which different diffusion modes have been identified by exploiting the density and free energy evolutions. Under the condition of low polymer concentration, diffusion is controlled by particle free motion with a normal Gaussian type. As the concentration increases, the non- Gaussian behavior can be observed when the particle size is comparable to the correlation length of polymer chain. Particles need to penetrate through a cage and overcome an entropic barrier, where the hopping and the model-coupling diffusion coexist. Further increase of polymer concentration can result in complete restriction of the particle by surrounding polymer segments. In this case, the non-Gaussian process fades away, and particle diffusion is controlled by Rouse dynamics of polymer chains with the generalized Gaussian characteristics.

Keywords

Nanoparticle Polymer solution Diffusion modes Driving force Dynamic density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51790502 and 51525301), the National Supercomputer Centre in Guangzhou, and Chemcloudcomputing of Beijing University of Chemical Technology.

References

  1. 1.
    Shen, H.; Tauzin, L. J.; Baiyasi, R.; Wang, W.; Moringo, N.; Shuang, B.; Landes, C. F. Single particle tracking: From theory to biophysical applications. Chem. Rev. 2017, 117, 7331–7376.CrossRefGoogle Scholar
  2. 2.
    Zimmerman, S. B.; Minton, A. P. Macromolecular crowding: Biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 27–65.CrossRefGoogle Scholar
  3. 3.
    Kessler, M. R. Polymer matrix composites: A perspective for a special issue of polymer reviews. Polym. Rev. 2012, 52, 229–233.CrossRefGoogle Scholar
  4. 4.
    Mackay, M. E.; Dao, T. T.; Tuteja, A.; Ho, D. L.; van Horn, B.; Kim, H.; Hawker, C. J. Nanoscale effects leading to non-Einstein- like decrease in viscosity. Nat. Mater. 2003, 2, 762–766.CrossRefGoogle Scholar
  5. 5.
    Yu, Y. X.; Tian, A. W.; Gao, G. H. Prediction of collective diffusion coefficient of bovine serum albumin in aqueous electrolyte solution with hard-core two-Yukawa potential. Phys. Chem. Chem. Phys. 2005, 7, 2423–2428.CrossRefGoogle Scholar
  6. 6.
    Tuteja, A.; Mackay, M. E.; Narayanan, S.; Asokan, S.; Wong, M. S. Breakdown of the continuum Stokes-Einstein relation for nanoparticle diffusion. Nano Lett. 2007, 7, 1276–1281.CrossRefGoogle Scholar
  7. 7.
    Zhang, X.; Gray-Weale, A. A. Local hydrodynamics of solvent near diffusing dendrimers: A test of the new Stokes-Einstein re- 7 lation. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1380–1392.CrossRefGoogle Scholar
  8. 8.
    Lungova, M.; Krutyeva, M.; Pyckhout-Hintzen, W.; Wischnewski, A.; Monkenbusch, M.; Allgaier, J.; Ohl, M.; Sharp, M.; Richter, D. Nanoscale motion of soft nanoparticles in unentangled and entangled polymer matrices. Phys. Rev. Lett. 2016, 117, 147803.CrossRefGoogle Scholar
  9. 9.
    Cai, L. H.; Panyukov, S.; Rubinstein, M. Hopping diffusion of nanoparticles in polymer matrices. Macromolecules 2015, 48, 847–862.CrossRefGoogle Scholar
  10. 0.
    Kohli, I.; Mukhopadhyay, A. Diffusion of nanoparticles in semidilute polymer solutions: Effect of different length scales. Macromolecules 2012, 45, 6143–6149.CrossRefGoogle Scholar
  11. 11.
    Grabowski, C. A.; Mukhopadhyay, A. Size effect of nanoparticle diffusion in a polymer melt. Macromolecules 2014, 47, 7238–7242.CrossRefGoogle Scholar
  12. 12.
    Griffin, P. J.; Bocharova, V.; Middleton, L. R.; Composto, R. J.; Clarke, N.; Schweizer, K. S.; Winey, K. I. Influence of the bound polymer layer on nanoparticle diffusion in polymer melts. ACS Macro Lett. 2016, 5, 1141–1145.CrossRefGoogle Scholar
  13. 13.
    Brown W, Stepanek P. Dynamic light scattering of poly(nlaurylmethacrylate) in the melt and in concentrated ethyl acetate solutions. J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 1013–1024.CrossRefGoogle Scholar
  14. 14.
    Ge, T.; Kalathi, J. T.; Halverson, J. D.; Grest, G. S.; Rubinstein, M. Nanoparticle motion in entangled melts of linear and nonconcatenated ring polymers. Macromolecules 2017, 50, 1749–1754.CrossRefGoogle Scholar
  15. 15.
    Petekidis, G.; Fytas, G.; Scherf, U.; Mullen, K.; Fleischer, G. Dynamics of poly(p-phenylene) ladder polymers in solution. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2211–2220.CrossRefGoogle Scholar
  16. 16.
    Eslami, H.; Rahimi, M.; Müller-Plathe, F. Molecular dynamics simulation of a silica nanoparticle in oligomeric poly(methyl methacrylate): A model system for studying the interphase thickness in a polymer-nanocomposite via different properties. Macromolecules 2013, 46, 8680–8692.CrossRefGoogle Scholar
  17. 17.
    Starr, F. W.; Schrøder, T. B.; Glotzer, S. C. Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 2002, 35, 4481–4492.CrossRefGoogle Scholar
  18. 18.
    Volgin, I. V.; Larin, S. V.; Abad, E.; Lyulin, S. V. Molecular dynamics simulations of fullerene diffusion in polymer melts. Macromolecules 2017, 50, 2207–2218.CrossRefGoogle Scholar
  19. 19.
    de Gennes, P. G. in Scaling concepts in polymer physics, Cornell University Press, Ithaca, NY, 1979.Google Scholar
  20. 20.
    Brochard Wyart, F.; de Gennes, P. G. Viscosity at small scales in polymer melts. Eur. Phys. J. E 2000, 1, 93–97.CrossRefGoogle Scholar
  21. 21.
    Phillies, G. D. J.; Clomenil, D. Probe diffusion in polymer solutions under THETA and good conditions. Macromolecules 1993, 26, 167–170.CrossRefGoogle Scholar
  22. 22.
    Cukier, R. I. Diffusion of Brownian spheres in semidilute polymer solutions. Macromolecules 1984, 17, 252–255.CrossRefGoogle Scholar
  23. 23.
    Cai, L. H.; Panyukov, S.; Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 2011, 44, 7853–7863.CrossRefGoogle Scholar
  24. 24.
    Cheng, S.; Xie, S. J.; Carrillo, J. M. Y.; Carroll, B.; Martin, H.; Cao, P. F.; Dadmun, M. D.; Sumpter, B. G.; Novikov, V. N.; Schweizer, K. S.; Sokolov, A. P. Big effect of small nanoparticles: A shift in paradigm for polymer nanocomposites. ACS Nano 2017, 11, 752–759.CrossRefGoogle Scholar
  25. 25.
    Fan, T. H.; Dhont, J. K. G.; Tuinier, R. Motion of a sphere through a polymer solution. Phys. Rev. E 2007, 75, 011803.CrossRefGoogle Scholar
  26. 26.
    Liu, J.; Cao, D.; Zhang, L. Molecular dynamics study on nanoparticle diffusion in polymer melts: A test of the Stokes-Einstein law. J. Phys. Chem. C 2008, 112, 6653–6661.CrossRefGoogle Scholar
  27. 27.
    Yamamoto, U.; Schweizer, K. S. Theory of nanoparticle diffusion in unentangled and entangled polymer melts. J. Chem. Phys. 2011, 135, 224902.CrossRefGoogle Scholar
  28. 28.
    Yamamoto, U.; Schweizer, K. S. Microscopic theory of the long-time diffusivity and intermediate-time anomalous transport of a nanoparticle in polymer melts. Macromolecules 2014, 48, 152–163.CrossRefGoogle Scholar
  29. 29.
    Ye, Y.; Ning, N.; Tian, M.; Zhang, L.; Mi, J. Nucleation and growth of hexagonal ice by dynamical density functional theory. Crys. Grow. Des. 2016, 17, 100–105.CrossRefGoogle Scholar
  30. 30.
    Rex, M.; Löwen, H. Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps. Phys. Rev. Lett. 2008, 101, 148302.CrossRefGoogle Scholar
  31. 31.
    van Teeffelen, S.; Likos, C. N.; Löwen, H. Colloidal crystal growth at externally imposed nucleation clusters. Phys. Rev. Lett. 2008, 100, 108302.CrossRefGoogle Scholar
  32. 32.
    Wittkowski, R.; Löwen, H.; Brand, H. R. Extended dynamical density functional theory for colloidal mixtures with temperature gradients. J. Chem. Phys. 2012, 137, 224904.CrossRefGoogle Scholar
  33. 33.
    Rex, M.; Wensink, H. H.; Löwen, H. Dynamical density functional theory for anisotropic colloidal particles. Phys. Rev. E 2007, 76, 021403.CrossRefGoogle Scholar
  34. 34.
    Archer, A. J. Dynamical density functional theory for molecular and colloidal fluids: A microscopic approach to fluid mechanics. J. Chem. Phys. 2009, 130, 014509.CrossRefGoogle Scholar
  35. 35.
    Ye, Y.; Du, Z.; Tian, M.; Zhang, L.; Mi, J. Diffusive dynamics of polymer chains in an array of nanoposts. Phys. Chem. Chem. Phys. 2017, 19, 380–387.CrossRefGoogle Scholar
  36. 36.
    Yu, Y. X.; Wu, J. Extended test-particle method for predicting the inter- and intramolecular correlation functions of polymeric fluid. J. Chem. Phys. 2003, 118, 3835–3842.CrossRefGoogle Scholar
  37. 37.
    Bresme, F.; Quirke, N. Computer simulation study of the wetting behavior and line tensions of nanometer size particulates at a liquid-vapor interface. Phys. Rev. Lett. 1998, 80, 3791.CrossRefGoogle Scholar
  38. 38.
    Holian, B. L.; Evans, D. J. Shear viscosities away from the melting line: A comparison of equilibrium and nonequilibrium molecular dynamics. J. Chem. Phys. 1983, 78, 5147–5150.CrossRefGoogle Scholar
  39. 39.
    Fenwick, N. I. D.; Bresme, F.; Quirke, N. Computer simulation of a Langmuir trough experiment carried out on a nanoparticulate array. J. Chem. Phys. 2001, 114, 7274–7282.CrossRefGoogle Scholar
  40. 40.
    Yamamoto, U.; Schweizer, K. S. Spatially dependent relative diffusion of nanoparticles in polymer melts. J. Chem. Phys. 2013, 139, 064907.CrossRefGoogle Scholar
  41. 41.
    Kim, S.; Karrila, S. J. in Microhydrodynamics: Principles and selected applications, Butterworth-Heinemann, Boston, 1991.Google Scholar
  42. 42.
    Rotne, J.; Prager, S. Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 1969, 50, 4831–4837.CrossRefGoogle Scholar
  43. 43.
    Trokhymchuk, A.; Nezbeda, I.; Jirsák, J.; Henderson, D. Hardsphere radial distribution function again. J. Chem. Phys. 2005, 123, 024501.CrossRefGoogle Scholar
  44. 44.
    Rosenfeld, Y. Free-energy model for the inhomogeneous hardsphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 1989, 63, 980.CrossRefGoogle Scholar
  45. 45.
    Yu, Y X.; Wu, J. Z. Structures of hard-sphere fluids from a modified fundamental-measure theory. J. Chem. Phys. 2002, 117, 10156–10164.CrossRefGoogle Scholar
  46. 46.
    Davis, H. T. in Statistical mechanics of phases, interfaces, and thin films, Wiley-VCH, New York, 1996.Google Scholar
  47. 47.
    Kim, S. C.; Lee, S. H. A density functional perturbative approach for simple fluids: The structure of a nonuniform Lennard-Jones fluid at interfaces. J. Phys.: Condens. Matter 2004, 16, 6365.Google Scholar
  48. 48.
    Lee, J. K.; Barker, J. A.; Pound, G. M. Surface structure and surface tension: Perturbation theory and Monte Carlo calculation. J. Chem. Phys. 1974, 60, 1976–1980.CrossRefGoogle Scholar
  49. 49.
    Peng, B.; Yu, Y. X. A density functional theory with a meanfield weight function: Applications to surface tension, adsorption, and Phase transition of a Lennard-Jones fluid in a slit-like pore. J. Phys. Chem. B 2008, 112, 15407–15416.CrossRefGoogle Scholar
  50. 50.
    Peng, B.; Yu, Y. X. A density functional theory for Lennard- Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials. Langmuir 2008, 24, 12431–12439.CrossRefGoogle Scholar
  51. 51.
    Tripathi, S.; Chapman, W. G. Microstructure and thermodynamics of inhomogeneous polymer blends and solutions. Phys. Rev. Lett. 2005, 94, 087801.CrossRefGoogle Scholar
  52. 52.
    McGarrity, E. S.; Frischknecht, A. L.; Mackay, M. E. Phase behavior of polymer/nanoparticle blends near a substrate. J. Chem. Phys. 2008, 128, 154904.CrossRefGoogle Scholar
  53. 53.
    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.CrossRefGoogle Scholar
  54. 54.
    Martin, M. G.; Siepmann, J. I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 1998, 102, 2569–2577.CrossRefGoogle Scholar
  55. 55.
    Curro, J. G.; Frischknecht, A. L. The structure of poly(ethylene oxide) liquids: Comparison of integral equation theory with molecular dynamics simulations and neutron scattering. Polymer 2005, 46, 6500–6506.CrossRefGoogle Scholar
  56. 56.
    Hayakawa, H.; Ichiki, K. Statistical theory of sedimentation of disordered suspensions. Phys. Rev. E 1995, 51, R3815.CrossRefGoogle Scholar
  57. 57.
    Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Glass and jamming transitions: From exact results to finitedimensional descriptions. Ann. Rev. Conden. Matt. Phys. 2017, 8, 265–288.CrossRefGoogle Scholar
  58. 58.
    Charbonneau, P.; Jin, Y.; Parisi, G.; Zamponi, F. Hopping and the Stokes-Einstein relation breakdown in simple glass formers. Proc. Natl. Acad. Sci. 2014, 111, 15025–15030.CrossRefGoogle Scholar
  59. 59.
    Boshoff, J. H. D.; Lobo, R. F.; Wagner, N. J. Influence of polymer motion, topology and simulation size on penetrant diffusion in amorphous, glassy polymers: Diffusion of helium in polypropylene. Macromolecules 2001, 34, 6107–6116.CrossRefGoogle Scholar
  60. 60.
    Kim, J.; Kim, C.; Sung, B. J. Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids. Phys. Rev. Lett. 2013, 110, 047801.CrossRefGoogle Scholar
  61. 61.
    Patti, A.; El Masri, D.; van Roij, R.; Dijkstra, M. Stringlike clusters and cooperative interlayer permeation in smectic liquid crystals formed by colloidal rods. Phys. Rev. Lett. 2009, 103, 248304.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
  2. 2.Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer MaterialsBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations