Clustering-triggered Emission of Cellulose and Its Derivatives

  • Lin-Lin Du
  • Bing-Li Jiang
  • Xiao-Hong Chen
  • Yun-Zhong Wang
  • Lin-Min Zou
  • Yuan-Li Liu
  • Yong-Yang GongEmail author
  • Chun Wei
  • Wang-Zhang YuanEmail author


In recent years, nonconventional luminogens free of aromatic groups have attracted extensive attention due to their academic importance and promising wide applications. Whilst previous studies generally focused on fluorescence from aliphatic amine or carbonylcontaining systems, less attention has been paid to room temperature phosphorescence (RTP) and the systems with predominant oxygen functionalities. In this work, photophysical properties of the polyhydroxy polymers, including microcrystalline cellulose (MCC), 2-hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), and cellulose acetate (CA), were studied and compared. While MCC, HEC, and HPC solids showed bright emission alongside distinct RTP, CA demonstrated relatively low intensity of solid emission without noticeable RTP. Their emissions were explained in terms of the clustering-triggered emission (CTE) mechanism and conformation rigidification. Additionally, on account of its intrinsic emission, concentrated HEC aqueous solution could be used as the probe for the detection of 2,4,6-trinitrophenol (TNP).


Cellulose Nonconventional luminogens Room temperature phosphorescent Clustering-triggered emission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51603050 and 51863006), the Natural Science Foundation of Guangxi (Nos. 2016GXNSFBA-380196, 2016GXNSFBA380064), Guangxi University Young and Middle-aged Teachers Basic Ability Promotion Project (No. KY2016YB316), and The Open Project Foundation of Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials (15-KF-10).

Supplementary material

10118_2019_2215_MOESM1_ESM.pdf (1.3 mb)
Clustering-triggered Emission of Cellulose and Its Derivatives


  1. 1.
    Hebner, T.; Wu, C.; Marcy, D.; Lu, M.; Sturm, J. Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 1998, 72, 519–521.CrossRefGoogle Scholar
  2. 2.
    Gustafsson, G.; Cao, Y.; Treacy, G.; Klavetter, F.; Colaneri, N.; Heeger, A. Flexible light-emitting diodes made from soluble conducting polymers. Nature 1992, 357, 477–479.CrossRefGoogle Scholar
  3. 3.
    Hide, F.; Diaz-Garcia, M. A.; Schwartz, B. J.; Andersson M. R.; Pei, Q.; Heeger, A. J. Semiconducting polymers: A new class of solid-state laser materials. Science 1996, 273, 1833–1836.CrossRefGoogle Scholar
  4. 4.
    Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.CrossRefGoogle Scholar
  5. 5.
    Yuan, W. Z.; Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 560–574.CrossRefGoogle Scholar
  6. 6.
    Dou, X.; Zhou, Q.; Chen, X.; Tan, Y.; He, X.; Lu, P.; Sui, K.; Tang, B. Z.; Zhang, Y.; Yuan, W. Z. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules 2018, 19, 2014–2022.CrossRefGoogle Scholar
  7. 7.
    Wang, Y.; Bin, X.; Chen, X.; Zheng, S.; Zhang, Y.; Yuan, W. Z. Emission and emissive mechanism of nonaromatic oxygen clusters. Macromol. Rapid Commun. 2018, 1800528.Google Scholar
  8. 8.
    Du, Y.; Yan, H.; Huang, W.; Chai, F.; Niu, S. Unanticipated strong blue photoluminescence from fully biobased aliphatic hyperbranched polyesters. ACS Sustain. Chem. Eng. 2017, 5, 6139–6147.CrossRefGoogle Scholar
  9. 9.
    Du, Y.; Yan, H.; Niu, S.; Bai, L.; Chai, F. Facile one-pot synthesis of novel water-soluble fluorescent hyperbranched poly(amino esters). RSC Adv. 2016, 6, 88030–88037.CrossRefGoogle Scholar
  10. 10.
    Shang, C.; Wei, N.; Zhuo, H.; Shao, Y.; Zhang, Q.; Zhang, Z.; Wang, H. Highly emissive poly(maleic anhydride-alt-vinyl pyrrolidone) with molecular weight-dependent and excitationdependent fluorescence. J. Mater. Chem. C 2017, 5, 8082–8090.CrossRefGoogle Scholar
  11. 11.
    Hu, C.; Ru, Y.; Guo, Z.; Liu, Z.; Song, J.; Song, W.; Zhang, X.; Qiao, J. New multicolored AIE photoluminescent polymers prepared by controlling the pH value. J. Mater. Chem. C 2019, DOI: 10.1039/C8TC05197F.Google Scholar
  12. 12.
    Ye, R.; Liu, Y.; Zhang, H.; Su, H.; Zhang, Y.; Xu, L.; Hu, R.; Kwok, R. T. K.; Wong, K. S.; Lam, J. W. Y.; Goddard III, W. A.; Tang, B. Z. Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polym. Chem. 2017, 8, 1722–1727.CrossRefGoogle Scholar
  13. 13.
    Chen, X.; He, Z.; Kausar, F.; Chen, G.; Zhang, Y.; Yuan, W. Z. Aggregation-induced dual emission and unusual luminescence beyond excimer emission of poly(ethylene terephthalate). Macromolecules 2018, 51, 9035–9042.CrossRefGoogle Scholar
  14. 14.
    Gong, J.; Wei, P.; Su, Y.; Li, Y.; Feng, X.; Lam, J. W. Y.; Zhang, D.; Song, X.; Tang, B. Z. Red-emitting salicylaldehyde schiff base with AIE behavior and large stokes shift. Chin. Chem. Lett. 2018, 29, 1493–1496.CrossRefGoogle Scholar
  15. 15.
    Hang, Y.; Cai, X.; Wang, J.; Jiang, T.; Hua, J.; Liu, B. Galactose functionalized diketopyrrolopyrrole as NIR fluorescence probes for lectin detection and HepG2 cell targeting based on aggregation-induced emission mechanism. Sci. China Chem. 2018, 16, 898–908.CrossRefGoogle Scholar
  16. 16.
    Shimizu, M.; Nakatani, M.; Nishimura, K. Aggregation-induced emission and thermally activated delayed fluorescence of 2,6-diaminobenzophenones. Sci. China Chem. 2018, 61, 925–931.CrossRefGoogle Scholar
  17. 17.
    Mao, L.; Zhang, X.; Wei, Y. Recent advances and progress for the fabrication and surface modification of AIE-active organicinorganic luminescent composites. Chinese J. Polym. Sci. 2019, 37, DOI: 10.1007/s10118-019-2208-1.Google Scholar
  18. 18.
    Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan, W. Z.; Zhang, Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 2018, 61, 351–359.CrossRefGoogle Scholar
  19. 19.
    Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y. Q.; Peng, Q.; Li, Q.; Li, Z. Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Mater. Chem. Front. 2018, 2, 2124–2129.CrossRefGoogle Scholar
  20. 20.
    Lin, Y.; Gao, J. W.; Liu, H. W.; Li, Y. S. Synthesis and characterization of hyperbranched poly(ether amide)s with thermoresponsive property and unexpected strong blue photoluminescence. Macromolecules 2009, 42, 3237–3246.CrossRefGoogle Scholar
  21. 21.
    Wu, D.; Liu, Y.; He, C.; Goh, S. H. Blue photoluminescence from hyperbranched poly(amino ester)s. Macromolecules 2005, 38, 9906–9909.CrossRefGoogle Scholar
  22. 22.
    Restani, R. B.; Morgado, P. I.; Ribeiro, M. P.; Correia, I. J.; Aguiar-Ricardo, A.; Bonifácio, V. D. Biocompatible polyurea dendrimers with pH-dependent fluorescence. Angew. Chem. Int. Ed. 2012, 124, 5252–5255.CrossRefGoogle Scholar
  23. 23.
    Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W. Z.; Zhang, Y. Clusteringtriggered emission of nonconjugated polyacrylonitrile. Small 2016, 12, 6586–6592.CrossRefGoogle Scholar
  24. 24.
    Zhao, E.; Lam, J. W. Y.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Huang, X., Hao, J.; Tang, B. Z. Poly[(maleic anhydride)-alt-(vinyl acetate)]: A pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules 2014, 48, 64–71.CrossRefGoogle Scholar
  25. 25.
    Niu, S.; Yan, H.; Chen, Z.; Li, S.; Xu, P.; Zhi, X. Unanticipated bright blue fluorescence produced from novel hyperbranched polysiloxanes carrying unconjugated carbon-carbon double bonds and hydroxyl groups. Polym. Chem. 2016, 7, 3747–3755.CrossRefGoogle Scholar
  26. 26.
    Miao, X.; Liu, T.; Zhang, C.; Geng, X.; Meng, Y.; Li, X. Fluorescent aliphatic hyperbranched polyether: Chromophore-free and without any N and P atoms. Phys. Chem. Chem. Phys. 2016, 18, 4295–4299.CrossRefGoogle Scholar
  27. 27.
    Wang, R. B.; Yuan, W. Z.; Zhu, X. Y. Aggregation-induced emission of non-conjugated poly(amido amine)s: Discovering, luminescent mechanism understanding and bioapplication. Chinese J. Polym. Sci. 2015, 33, 680–687.CrossRefGoogle Scholar
  28. 28.
    Lu, H.; Feng, L.; Li, S.; Zhang, J.; Lu, H.; Feng, S. Unexpected strong blue photoluminescence produced from the aggregation of unconventional chromophores in novel siloxane-poly (amidoamine) dendrimers. Macromolecules 2015, 48, 476–482.CrossRefGoogle Scholar
  29. 29.
    Lee, W. I.; Bae, Y.; Bard, A. J. Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 8358–8359.CrossRefGoogle Scholar
  30. 30.
    Du, L.; He, G.; Gong, Y.; Yuan, W. Z.; Wang, S.; Yu, C.; Liu, Y.; Wei, C. Efficient persistent room temperature phosphorescence achieved through Zn2+ doped sodium carboxymethyl cellulose composites. Compos. Commun. 2018, 8, 106–110.CrossRefGoogle Scholar
  31. 31.
    Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Lam, J. W.; Tang, L.; Lu, P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J. Phys. Chem. C 2010, 114, 6090–6099.CrossRefGoogle Scholar
  32. 32.
    Gong, Y.; Tan, Y.; Mei, J.; Zhang, Y.; Yuan, W.; Zhang, Y.; Sun, J.; Tang, B. Z. Room temperature phosphorescence from natural products: Crystallization matters. Sci. China Chem. 2013, 56, 1178–1182.CrossRefGoogle Scholar
  33. 33.
    Zhou, Q.; Wang, Z.; Dou, X.; Wang, Y.; Liu, S.; Zhang, Y.; Yuan, W. Z. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front. 2019, DOI: 10.1039/C8QM00528A.Google Scholar
  34. 34.
    Kaur, S.; Bhalla, V.; Vij, V.; Kumar, M. Fluorescent aggregates of hetero-oligophenylene derivative as “no quenching” probe for detection of picric acid at femtogram level. J. Mater. Chem. C 2014, 2, 3936–3941.CrossRefGoogle Scholar
  35. 35.
    Dinda, D.; Gupta, A.; Shaw, B. K.; Sadhu, S.; Saha, S. K. Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through FRET mechanism. ACS Appl. Mater. Interfaces 2014, 6, 10722–10728.CrossRefGoogle Scholar
  36. 36.
    Chen, X.; Liu, X.; Lei, J.; Xu, L.; Zhao, Z.; Kausar, F.; Xie, X.; Zhu, X.; Zhang, Y.; Yuan, W. Z. Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes. Mol. Syst. Des. Eng. 2018, 3, 364–375.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lin-Lin Du
    • 1
  • Bing-Li Jiang
    • 2
  • Xiao-Hong Chen
    • 3
  • Yun-Zhong Wang
    • 3
  • Lin-Min Zou
    • 1
  • Yuan-Li Liu
    • 1
  • Yong-Yang Gong
    • 1
    Email author
  • Chun Wei
    • 1
  • Wang-Zhang Yuan
    • 3
    Email author
  1. 1.Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Ministry of Education, College of Materials Science and EngineeringGuilin University of TechnologyGuilinChina
  2. 2.College of PharmacyGuilin Medical UniversityGuilinChina
  3. 3.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations