Advertisement

Nanomagnetic Organogel Based on Dodecyl Methacrylate for Absorption and Removal of Organic Solvents

  • Hossein GhasemzadehEmail author
  • Maryam Dargahi
  • Ghazaleh Eyvazi
  • Bahman Vasheghani Farahani
Article
  • 2 Downloads

Abstract

A novel nanomagnetic organogel was synthesized by in situ emulsion polymerization-crosslinking method using dodecyl methacrylate (DDMA) and styrene (St) as monomers, divinylbenzene (DVB) as a crosslinking agent, azobisisobutyronitrile (AIBN) as an initiator, and Fe3O4 as a nanomagnetic particle. Modification of the network was carried out by inclusion of the multi-walled carbon nanotubes (MWCNT) into the organogel matrix. The structure of the nanocomposite was characterized using FTIR spectroscopy, SEM, TEM, TGA/DTG, VSM, and BET analysis. The effects of various parameters such as the amount of crosslinker, initiator, Fe3O4, and reaction time as well as monomer ratio on the oil absorption of the organogel were studied. The synthesized organogel can absorb about 35.5, 22.1, 29.86, 14.58, 17.6, 15.3, and 13.7 g·g−1 of CHCl3, toluene, CH2Cl2, hexane, crude oil, gasoline, and diesel oil, under the optimized polymerization conditions, respectively. The nanocomposite organogels can be easily separated by a magnetic field after absorption of organic solvents.

Keywords

Nanomagnetic organogel Dodecyl methacrylate Styrene Crosslinking MWCNT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doshi, B.; Sillanpaa, M.; Kalliola, S. A review of bio-based materials for oil spill treatment. Water Res. 2018, 135, 262–277.CrossRefGoogle Scholar
  2. 2.
    Kharisov, B. I.; González, M. O.; Quezada, T. S.; de la Fuente, I. G.; Longoria, F. Materials and nanomaterials for the removal of heavy oil components. J. Petrol. Sci. Eng. 2017, 156, 971–982.CrossRefGoogle Scholar
  3. 3.
    Cao, S.; Dong, T.; Xu, G.; Wang, F. M. Oil spill cleanup by hydrophobic natural fibers. J. Nat. Fibers 2017, 14, 727–735.CrossRefGoogle Scholar
  4. 4.
    Wang, J.; Zheng, Y.; Wang, A. Effect of kapok fiber treated with various solvents on oil absorbency. Ind. Crops. Prod. 2012, 40, 178–184.CrossRefGoogle Scholar
  5. 5.
    Likon, M.; Remskar, M.; Ducman, V.; Svegl, F. Populus seed fibers as a natural source for production of oil super absorbents. J. Environ. Manage. 2013, 114, 158–167.CrossRefGoogle Scholar
  6. 6.
    Zheng, Y.; Zhu, Y.; Wang, A.; Hu, H. Potential of Calotropis gigantea fiber as an absorbent for removal of oil from water. Ind. Crops. Prod. 2016, 83, 387–390.CrossRefGoogle Scholar
  7. 7.
    Ali, I.; Asim, M.; Khan, T. A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manage. 2012, 113, 170–183.CrossRefGoogle Scholar
  8. 8.
    Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O.; Kokot, S. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. J. Porous Mat. 2003, 10, 159–170.CrossRefGoogle Scholar
  9. 9.
    Chen, C.; Li, F.; Zhang, Y.; Wang, B.; Fan, Y.; Wang, X.; Sun, R. Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chem. Eng. J. 2018, 350, 173–180.CrossRefGoogle Scholar
  10. 10.
    Li, Z.; Shao, L.; Hu, W.; Zheng, T.; Lu, L.; Cao, Y.; Chen, Y. Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr. Polym. 2018, 191, 183–190.CrossRefGoogle Scholar
  11. 11.
    Lee, J. H.; Kim, D. H.; Kim, Y. D. High-performance, recyclable and superhydrophobic oil absorbents consisting of cotton with a polydimethylsiloxane shell. J. Ind. Eng. Chem. 2016, 35, 140–145.CrossRefGoogle Scholar
  12. 12.
    Özen, I.; Simsek, S.; Okyay, G. Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions. Appl. Surf. Sci. 2015, 332, 22–31.CrossRefGoogle Scholar
  13. 13.
    Cao, E.; Xiao, W.; Duan, W.; Wang, N.; Wang, A.; Zheng, Y. Metallic nanoparticles roughened Calotropis gigantea fiber enables efficient absorption of oils and organic solvents. Ind. Crops. Prod. 2018, 115, 272–279.CrossRefGoogle Scholar
  14. 14.
    Nwadiogbu, J. O.; Ajiwe, V. I. E.; Okoye, P. A. C. Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs: Equilibrium and kinetic studies. J. Taibah. Univ. Sci. 2018, 10, 56–63.CrossRefGoogle Scholar
  15. 15.
    Shang, W.; Sheng, Z.; Shen, Y.; Ai, B.; Zheng, L.; Yang, J.; Xu, Z. Study on oil absorbency of succinic anhydride modified banana cellulose in ionic liquid. Carbohydr. Polym. 2016, 141, 135–142.CrossRefGoogle Scholar
  16. 16.
    Zhai, T.; Zheng, Q.; Cai, Z.; Xia, H.; Gong, S. Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydr. Polym. 2016, 148, 300–308.CrossRefGoogle Scholar
  17. 17.
    Chen, J.; Wang, S.; Peng, J.; Li, J.; Zhai, M. New lipophilic polyelectrolyte gels containing quaternary ammonium salt with superabsorbent capacity for organic solvents. ACS Appl. Mater. Interfaces 2014, 6, 14894–14902.CrossRefGoogle Scholar
  18. 18.
    Kizil, S.; Karadag, K.; Ozan Aydin, G.; Bulbul Sonmez, H. Poly(alkoxysilane) reusable organogels for removal of oil/organic solvents from water surface. J. Environ. Manage. 2015, 149, 57–64.CrossRefGoogle Scholar
  19. 19.
    Nam, C.; Zhang, G.; Chung, T. C. M. Polyolefin-based interpenetrating polymer network absorbent for crude oil entrapment and recovery in aqueous system. J. Hazard. Mater. 2018, 351, 285–292.CrossRefGoogle Scholar
  20. 20.
    Pourjavadi, A.; Doulabi, M.; Soleyman, R. Novel carbon-nanotube- based organogels as candidates for oil recovery. Polym. Int. 2013, 62, 179–183.CrossRefGoogle Scholar
  21. 21.
    Rahmani, Z.; Samadi, M. T.; Kazemi, A.; Rashidi, A. M.; Rahmani, A. R. Nanoporous graphene and graphene oxide-coated polyurethane sponge as a highly efficient, superhydrophobic, and reusable oil spill absorbent. J. Environ. Chem. Eng. 2017, 5, 5025–5032.CrossRefGoogle Scholar
  22. 22.
    Pourjavadi, A.; Doulabi, M.; Hosseini, S. H. Novel polyelectrolyte gels as absorbent polymers for nonpolar organic solvents based on polymerizable ionic liquids. Polymer 2012, 53, 5737–5742.CrossRefGoogle Scholar
  23. 23.
    Song, C.; Ding, L.; Yao, F.; Deng, J.; Yang, W. ß-Cyclodextrin- based oil-absorbent microspheres: Preparation and high oil absorbency. Carbohydr. Polym. 2013, 91, 217–223.CrossRefGoogle Scholar
  24. 24.
    Zhang, T.; Kong, L.; Dai, Y.; Yue, X.; Rong, J.; Qiu, F.; Pan, J. Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem. Eng. J. 2017, 309, 7–14.CrossRefGoogle Scholar
  25. 25.
    Durgun, M.; Ozan Aydin, G.; Bulbul Sonmez, H. Aromatic alkoxysilane based hybrid organogels as sorbent for toxic organic compounds, fuels and crude oil. React. Funct. Polym. 2017, 115, 63–72.CrossRefGoogle Scholar
  26. 26.
    Cao, W. T.; Liu, Y. J.; Ma, M. G.; Zhu, J. F. Facile preparation of robust and superhydrophobic materials for self-cleaning and oil/water separation. Colloid. Surf. A 2017, 529, 18–25.CrossRefGoogle Scholar
  27. 27.
    Periasamy, A. P.; Wu, W. P.; Ravindranath, R.; Roy, P.; Lin, G. L.; Chang, H. T. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery. Mar. Pollut. Bull. 2017, 114, 888–895.CrossRefGoogle Scholar
  28. 28.
    Wu, B.; Zhou, M. H. Recycling of waste tyre rubber into oil absorbent. Waste Manag. 2009, 29, 355–359.CrossRefGoogle Scholar
  29. 29.
    Yin, T.; Zhang, X.; Liu, X.; Wang, C. Resource recovery of Eichhornia crassipes as oil superabsorbent. Mar. Pollut. Bull. 2017, 118, 267–274.CrossRefGoogle Scholar
  30. 30.
    Wang, J.; Zheng, Y.; Wang, A. Superhydrophobic kapok fiber oil-absorbent: Preparation and high oil absorbency. Chem. Eng. J. 2012, 213, 1–7.CrossRefGoogle Scholar
  31. 31.
    Wang, Y.; Li, Q.; Bo, L.; Wang, X.; Zhang, T.; Li, S.; Ren, P.; Wei, G. Synthesis and oil absorption of biomorphic MgAl layered double oxide/acrylic ester resin by suspension polymerization. Chem. Eng. J. 2016, 284, 989–994.CrossRefGoogle Scholar
  32. 32.
    Yue, X.; Zhang, T.; Yang, D.; Qiu, F.; Rong, J.; Xu, J.; Fang, J. The synthesis of hierarchical porous Al2O3/acrylic resin composites as durable, efficient and recyclable absorbents for oil/water separation. Chem. Eng. J. 2017, 309, 522–531.CrossRefGoogle Scholar
  33. 33.
    Zhang, C.; Yang, D.; Zhang, T.; Qiu, F.; Dai, Y.; Xu, J.; Jing, Z. Synthesis of MnO2/poly(n-butylacrylate-co-butyl methacrylate- co-methyl methacrylate) hybrid resins for efficient oils and organic solvents absorption. J. Clean. Prod. 2017, 148, 398–406.CrossRefGoogle Scholar
  34. 34.
    Gao, H.; Sun, P.; Zhang, Y.; Zeng, X.; Wang, D.; Zhang, Y.; Wang, W.; Wu, J. A two-step hydrophobic fabrication of melamine sponge for oil absorption and oil/water separation. Surf. Coat. Tech. 2018, 339, 147–154.CrossRefGoogle Scholar
  35. 35.
    Gupta, S.; Tai, N. H. Carbon materials as oil sorbents: A review on the synthesis and performance. J. Mat. Chem. A 2016, 4, 1550–1565.CrossRefGoogle Scholar
  36. 36.
    Ge, J.; Zhao, H. Y.; Zhu, H. W.; Huang, J.; Shi, L. A.; Yu, S. H. Advanced sorbents for oil-spill cleanup: Recent advances and future perspectives. Adv. Mater. 2016, 28, 10459–10490.CrossRefGoogle Scholar
  37. 37.
    Saleem, J.; Adil Riaz, M.; Gordon, M. Oil sorbents from plastic wastes and polymers: A review. J. Hazard. Mater. 2018, 341, 424–437.CrossRefGoogle Scholar
  38. 38.
    Mi, H. Y.; Jing, X.; Xie, H.; Huang, H. X.; Turng, L. S. Magnetically driven superhydrophobic silica sponge decorated with hierarchical cobalt nanoparticles for selective oil absorption and oil/water separation. Chem. Eng. J. 2018, 337, 541–551.CrossRefGoogle Scholar
  39. 39.
    Gu, J.; Jiang, W.; Wang, F.; Chen, M.; Mao, J.; Xie, T. Facile removal of oils from water surfaces through highly hydrophobic and magnetic polymer nanocomposites. Appl. Surf. Sci. 2014, 301, 492–499.CrossRefGoogle Scholar
  40. 40.
    Song, B.; Zhu, J.; Fan, H. Magnetic fibrous sorbent for remote and efficient oil adsorption. Mar. Pollut. Bull. 2017, 120, 159–164.CrossRefGoogle Scholar
  41. 41.
    Turco, A.; Malitesta, C.; Barillaro, G.; Greco, A.; Maffezzoli, A.; Mazzotta, E. A magnetic and highly reusable macroporous superhydrophobic/superoleophilic DDMS/MWNT nanocomposite for oil sorption from water. J. Mater. Chem. A 2015, 3, 17685–17696.CrossRefGoogle Scholar
  42. 42.
    Gui, X.; Zeng, Z.; Lin, Z.; Gan, Q.; Xiang, R.; Zhu, Y.; Cao, A.; Tang, Z. Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation. ACS Appl. Mater. Interfaces 2013, 5, 5845–5850.CrossRefGoogle Scholar
  43. 43.
    Cheng, Y.; Xu P.; Zeng W.; Ling, C.; Zhao, S.; Liao, K.; Sun, Y.; Zhou, A. Highly hydrophobic and ultralight graphene aerogel as high efficiency oil absorbent material. J. Environ. Chem. Eng. 2017, 5, 1957–1963.CrossRefGoogle Scholar
  44. 44.
    Teli, M. D.; Valia, S. P. Acetylation of banana fiber to improve oil absorbency. Carbohydr. Polym. 2013, 92, 328.CrossRefGoogle Scholar
  45. 45.
    Yu, I.; Hao, G.; Liang, Q.; Zhou, S.; Zhang, N.; Jiang, W. Facile preparation and characterization of modified magnetic silica nanocomposite particles for oil absorption. Appl. Surf. Sci. B 2015, 357, 2297–2305.CrossRefGoogle Scholar
  46. 46.
    Liu, T.; Chen, S.; Liu, H. Oil adsorption and reuse performance of multi-walled carbon nanotubes. Procedia Eng. 2015, 102, 1896–1902.CrossRefGoogle Scholar
  47. 47.
    Lu, Y.; Wang, Y.; Liu, L.; Yuan, W. Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials. Carbohydr. Polym. 2017, 173, 422–430.CrossRefGoogle Scholar
  48. 48.
    Samadi, S.; Yazd, S. S.; Abdoli, H.; Jafari, P.; Aliabadi, M. Fabrication of novel chitosan/PAN/magnetic ZSM-5 zeolite coated sponges for absorption of oil from water surfaces. Int. J. Biol. Macromol. 2017, 105, 370–376.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hossein Ghasemzadeh
    • 1
    Email author
  • Maryam Dargahi
    • 1
  • Ghazaleh Eyvazi
    • 1
  • Bahman Vasheghani Farahani
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceImam Khomeini International UniversityQazvinIran

Personalised recommendations