Advertisement

Accelerated Cutaneous Wound Healing Using an Injectable Teicoplaninloaded PLGA-PEG-PLGA Thermogel Dressing

  • Wei-Ke Xu
  • Jing-Yu Tang
  • Zhang Yuan
  • Cai-Yun Cai
  • Xiao-Bin Chen
  • Shu-Quan Cui
  • Peng Liu
  • Lin YuEmail author
  • Kai-Yong Cai
  • Jian-Dong Ding
Article
  • 63 Downloads

Abstract

Bacterial infection is a very troublesome issue in wound treatment, which stimulates exudate formation and severely delays the healing process. Herein, a thermogelling dressing system composed of two triblock copolymers of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) with different block lengths was developed to deliver teicoplanin (TPN), a glycopeptide antibiotic, for cutaneous wound repair. The TPN-loaded thermogel was a free-flowing sol at room temperature and formed a semi-solid gel at physiological temperature. In vitro studies demonstrated that the TPN-loaded thermogel system exhibited desired tissue adhesiveness and realized the sustained release of TPN in a fast-followed-slow manner for over three weeks. Furthermore, a full-thickness excision wound model in Sprague-Dawley (SD) rats was constructed to assess the efficacy of TPNloaded thermogel formulation. Gross and histopathologic observations implied that treatment with the thermogel formulation reduced inflammation response, promoted disposition of collagen, enhanced angiogenesis, and accelerated wound closure and maturity of SD rats. The combination of the bioactivity of TPN and the acidic nature of the thermogel matrix was responsible for such an enhanced wound healing process. Consequently, the TPN-loaded PLGA-PEG-PLGA thermogel is a good candidate of wound dressing for full-thickness excision wound healing.

Keywords

Wound dressing PLGA-PEG-PLGA thermogel Anti-infection Teicoplanin Sustained release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51773043, 81772363, and 21474019), National Key R&D Program of China (No. 2016YFC1100300), and China Postdoctoral Science Foundation (No. 2018M632020).

References

  1. 1.
    Diegelmann R. F.; Evans M. C. Wound healing: An overview of acute, fibrotic and delayed healing. Front. Biosci. 2004, 9, 283–289.CrossRefGoogle Scholar
  2. 2.
    Boateng J. S.; Matthews K. H.; Stevens H. N. E.; Eccleston G. M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008, 97, 2892–2923.CrossRefGoogle Scholar
  3. 3.
    Xu R.; Luo G. X.; Xia H. S.; He W. F.; Zhao J.; Liu B.; Tan J. L.; Zhou J. Y.; Liu D. S.; Wang Y. Z.; Yao Z. H.; Zhan R. X.; Yang S. S.; Wu J. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 2015, 40, 1–11.CrossRefGoogle Scholar
  4. 4.
    Malmsjo M.; Ingemansson R.; Martin R.; Huddleston E. Negative-pressure wound therapy using gauze or open-cell polyurethane foam: Similar early effects on pressure transduction and tissue contraction in an experimental porcine wound model. Wound Rep. Reg. 2009, 17, 200–205.CrossRefGoogle Scholar
  5. 5.
    Chen L.; Cheng H. H.; Xiong J.; Zhu Y. T.; Zhang H. P.; Xiong X.; Liu Y. M.; Yu J.; Guo Z. X. Improved mechanical properties of poly(butylene succinate) membrane by co-electrospinning with gelatin. Chinese J. Polym. Sci. 2018, 36, 1063–1069.CrossRefGoogle Scholar
  6. 6.
    Vargas E. A.; do Vale Baracho N. C.; de Brito J.; de Queiroz A. A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010, 6, 1069–1078.CrossRefGoogle Scholar
  7. 7.
    Bu Y. Z.; Sun G. Z.; Zhang L. C.; Liu J. H.; Yang F.; Tang P. F.; Wu D. C. POSS-modified PEG adhesives for wound closure. Chinese J. Polym. Sci. 2017, 35, 1231–1242.Google Scholar
  8. 8.
    Ishihara J.; Ishihara A.; Fukunaga K.; Sasaki K.; White M. J. V.; Briquez P. S.; Hubbell J. A. Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nat. Commun. 2018, 9, 2163.CrossRefGoogle Scholar
  9. 9.
    Qu J.; Zhao X.; Liang Y.; Zhang T.; Ma P. X.; Guo B. L. Antibacterial adhesive injectable hydrogels with rapid self-heal- ing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018, 183, 185–199.CrossRefGoogle Scholar
  10. 10.
    Vukovic J. S.; Babic M. M.; Antic K. M.; Miljkovic M. G.; Peric-Grujic A. A.; Filipovic J. M.; Tomic S. L. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application. Mater. Chem. Phys. 2015, 164, 51–62.Google Scholar
  11. 11.
    Zhao X.; Guo B. L.; Wu H.; Liang Y. P.; Ma P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784.CrossRefGoogle Scholar
  12. 12.
    Li S.; Dong S.; Xu W.; Tu S.; Yan L.; Zhao C.; Ding J. X.; Chen X. S. Antibacterial Hydrogels. Adv. Sci. 2018, 5, 1700527.CrossRefGoogle Scholar
  13. 13.
    Zou Y. J.; He S. S.; Du J. Z. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci. 2018, 36, 1239–1250.Google Scholar
  14. 14.
    Zhao X.; Lang Q.; Yildirimer L.; Lin Z. Y.; Cui W.; Annabi N.; Ng K. W.; Dokmeci M. R.; Ghaemmaghami A. M.; Khademhosseini A. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv. Healthc. Mater. 2016, 5, 108–118.CrossRefGoogle Scholar
  15. 15.
    Zhao X.; Sun X.; Yildirimer L.; Lang Q.; Lin Z. Y.; Zheng R.; Zhang Y.; Cui W.; Annabi N.; Khademhosseini A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017, 49, 66–77.CrossRefGoogle Scholar
  16. 16.
    Gong C. Y.; Wu Q. J.; Wang Y. J.; Zhang D. D.; Luo F.; Zhao X.; Wei Y. Q.; Qian Z. Y. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013, 34, 6377–6387.Google Scholar
  17. 17.
    Hong J. H.; Lee H. J.; Jeong B. Injectable polypeptide thermogel as a tissue engineering system for hepatogenic differentiation of tonsil-derived mesenchymal stem cells. ACS Appl. Mater. Interfaces 2017, 9, 11568–11576.CrossRefGoogle Scholar
  18. 18.
    Yun E. J.; Yon B.; Joo M. K.; Jeong B. Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)- poly(L-alanine) thermogel. Biomacromolecules 2012, 13, 1106–1111.CrossRefGoogle Scholar
  19. 19.
    Li X. L.; Fan R. R.; Tong A. P.; Yang M. J.; Deng J. J.; Zhou L. X.; Zhang X. N.; Guo G. In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int. J. Pharm. 2015, 495, 560–571.CrossRefGoogle Scholar
  20. 20.
    Cui S. Q.; Yu L.; Ding J. D. Injectable thermogels based on block copolymers of appropriate amphiphilicity. Acta Polymerica Sinica (in Chinese) 2018, 8, 863–881.Google Scholar
  21. 21.
    Fu S. Z.; Ni P. Y.; Wang B. Y.; Chu B. Y.; Zheng L.; Luo F.; Luo J. C.; Qian Z. Y. Injectable and thermo-sensitive PEGPCL- PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 2012, 33, 4801–4809.CrossRefGoogle Scholar
  22. 22.
    Zhao X.; Wu H.; Guo B. L.; Dong R.; Qiu Y.; Ma P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as selfhealing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34–47.CrossRefGoogle Scholar
  23. 23.
    Zheng Y.; Cheng Y.; Chen J.; Ding J. X.; Li M.; Li C.; Wang J. C.; Chen X. S. Injectable hydrogel-microsphere construct with sequential degradation for locally synergistic chemotherapy. ACS Appl. Mater. Interfaces 2017, 9, 3487–3496.CrossRefGoogle Scholar
  24. 24.
    Moon H. J.; Ko D. Y.; Park M. H.; Joo M. K.; Jeong B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev. 2012, 41, 4860–4883.CrossRefGoogle Scholar
  25. 25.
    Zhang Y. B.; Zhang J.; Chang F.; Xu W. G.; Ding J. X. Repair of full-thickness articular cartilage defect using stem cellencapsulated thermogel. Mater. Sci. Eng.: C Mater. Biol. Appl. 2018, 88, 79–87.CrossRefGoogle Scholar
  26. 26.
    Chen Y. P.; Li Y. Z.; Shen W. J.; Li K.; Yu L.; Chen Q.; Ding J. D. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci. Rep. 2016, 6, 31593.CrossRefGoogle Scholar
  27. 27.
    McKenzie M.; Betts D.; Suh A.; Bui K.; Tang R.; Liang K. X.; Achilefu S.; Kwon G. S.; Cho H. Proof-of-concept of polymeric sol-gels in multi-drug delivery and intraoperative image- guided surgery for peritoneal ovarian cancer. Pharm. Res. 2016, 33, 2298–2306.CrossRefGoogle Scholar
  28. 28.
    Li K.; Yu L.; Liu X.; Chen C.; Chen Q.; Ding J. D. A longacting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials 2013, 34, 2834–2842.Google Scholar
  29. 29.
    Chen Y. P.; Luan J. B.; Shen W. J.; Lei K. W.; Yu L.; Ding J. D. Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system. ACS Appl. Mater. Interfaces 2016, 8, 30703–30713.CrossRefGoogle Scholar
  30. 30.
    Shen W. J.; Chen X. B.; Luan J. B.; Wang D. N.; Yu L.; Ding J. D. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl. Mater. Interfaces 2017, 9, 40031–40046.CrossRefGoogle Scholar
  31. 31.
    Cao L. P.; Li Q. L.; Zhang C.; Wu H. C.; Yao L. Q.; Xu M. D.; Yu L.; Ding J. D. Safe and efficient colonic endoscopic submucosal dissection using an injectable hydrogel. ACS Biomater. Sci. Eng. 2016, 2, 393–402.CrossRefGoogle Scholar
  32. 32.
    Li X. Z.; Ding J. X.; Zhang Z. Z.; Yang M.; Yu J. K.; Wang J.; Chang F.; Chen X. S. Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration. ACS Appl. Mater. Interfaces 2016, 8, 5148–5159.CrossRefGoogle Scholar
  33. 33.
    Zhang Y. B.; Ding J. X.; Sun D. K.; Sun H.; Zhuang X. L.; Chang F.; Wang J. C.; Chen X. S. Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. Mater. Sci. Eng.: C Mater. Biol. Appl. 2015, 49, 262–268.CrossRefGoogle Scholar
  34. 34.
    Zhang W.; Ning C.; Xu W.; Hu H.; Li M.; Zhao G.; Ding J. X.; Chen X. S. Precision-guided long-acting analgesia by Gelimmobilized bupivacaine-loaded microsphere. Theranostics 2018, 8, 3331–3347.CrossRefGoogle Scholar
  35. 35.
    Zhang W.; Xu W.; Ning C.; Li M.; Zhao G.; Jiang W.; Ding J. X.; Chen X. S. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. Biomaterials 2018, 181, 378–391.CrossRefGoogle Scholar
  36. 36.
    Strodtbeck F. Physiology of wound healing. Newborn Infant Nurs. Rev. 2001, 1, 43–52.CrossRefGoogle Scholar
  37. 37.
    Kruse C. R.; Nuutila K.; Lee C. C. Y.; Kiwanuka E.; Singh M.; Caterson E. J.; Eriksson E.; Sorensen J. A. The external microenvironment of healing skin wounds. Wound Rep. Reg. 2015, 23, 456–464.CrossRefGoogle Scholar
  38. 38.
    Yu L.; Chang G. T.; Zhang H.; Ding J. D. Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acidco-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acidco- glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1122–1133.CrossRefGoogle Scholar
  39. 39.
    Shim M. S.; Lee H. T.; Shim W. S. Poly(D,L-lactic acid-coglycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acidco- glycolic acid) triblock copolymer and thermoreversible phase transition in water. J. Biomed. Mater. Res. B 2002, 61, 188–196.CrossRefGoogle Scholar
  40. 40.
    Yu L.; Zhang Z.; Zhang H.; Ding J. D. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel. Biomacromolecules 2009, 10, 1547–1553.CrossRefGoogle Scholar
  41. 41.
    Yu L.; Zhang Z.; Zhang H. A.; Ding J. D. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules 2010, 11, 2169–2178.CrossRefGoogle Scholar
  42. 42.
    Yu L.; Li K.; Liu X.; Chen C.; Bao Y. C.; Ci T. Y.; Chen Q. H.; Ding J. D. In vitro and in vivo evaluation of a onceweekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel. J. Pharm. Sci. 2013, 102, 4140–4149.CrossRefGoogle Scholar
  43. 43.
    Zhang L.; Shen W. J.; Luan J. B.; Yang D. X.; Wei G.; Yu L.; Lu W. Y.; Ding J. D. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater. 2015, 23, 271–281.CrossRefGoogle Scholar
  44. 44.
    Bowler P. G. Wound pathophysiology, infection and therapeutic options. Ann. Med. 2002, 34, 419–427.CrossRefGoogle Scholar
  45. 45.
    Zanger P.; Holzer J.; Schleucher R.; Scherbaum H.; Schittek B.; Gabrysch S. Severity of staphylococcus aureus infection of the skin is associated with inducibility of human beta-defensin 3 but not human β-defensin 2. Infect. Immun. 2010, 78, 3112–3117.CrossRefGoogle Scholar
  46. 46.
    Bernard P. Management of common bacterial infections of the skin. Curr. Opin. Infect. Dis. 2008, 21, 122–128.CrossRefGoogle Scholar
  47. 47.
    Ye S.; Jiang L.; Wu J. M.; Su C.; Huang C. B.; Liu X. F.; Shao W. Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: In vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 2018, 10, 5862–5870.CrossRefGoogle Scholar
  48. 48.
    Lee Y. M.; Kim S. S.; Park M. H.; Kim K. W.; Sung Y. K.; Kang I. Y. β-Chitin-based wound dressing containing silver sulfurdiazine. J. Mater. Sci.: Mater. Med. 2000, 11, 817–823.Google Scholar
  49. 49.
    Wang Y.; Cui R.; Li G.; Gao Q.; Yuan S.; Altmeyer R.; Zou G. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Res. 2016, 125, 1–7.CrossRefGoogle Scholar
  50. 50.
    Gocer H.; Onger M. E.; Kuyubasi N.; Cirakli A.; Kir M. C. The effect of teicoplanin on fracture healing: An experimental study. Eklem Hastalik Cerrahisi. 2016, 27, 16–21.CrossRefGoogle Scholar
  51. 51.
    Kester R. C.; Antrum R.; Thornton C. A.; Ramsden C. H.; Harding, I. A comparison of teicoplanin versus cephradine plus metronidazole in the prophylaxis of post-operative infection in vascular surgery. J. Hosp. Infect. 1999, 41, 233–243.Google Scholar
  52. 52.
    Rybak M. J.; Lerner S. A.; Levine D. P.; Albrecht L. M.; Mcneil P. L.; Thompson G. A.; Kenny M. T.; Yuh L. Teicoplanin pharmacokinetics in intravenous drug-abusers being treated for bacterial-endocarditis. Antimicrob. Agents Chemother. 1991, 35, 696–700.CrossRefGoogle Scholar
  53. 53.
    Peng L. H.; Wei W.; Qi X. T.; Shan Y. H.; Zhang F. J.; Chen X.; Zhu Q. Y.; Yu L.; Liang W. Q.; Gao J. Q. Epidermal stem cells manipulated by pDNA-VEGF165/CYD-PEI nanoparticles loaded gelatin/beta-TCP matrix as a therapeutic agent and gene delivery vehicle for wound healing. Mol. Pharmaceut. 2013, 10, 3090–3102.CrossRefGoogle Scholar
  54. 54.
    Luan J. B.; Zhang Z.; Shen W. J.; Chen Y. P.; Yang X.; Chen X.; Yu L.; Sun J.; Ding J. D. Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation. ACS Appl. Mater. Interfaces 2018, 10, 30235–30246.CrossRefGoogle Scholar
  55. 55.
    Faust S. N.; Levin M.; Harrison O. B.; Goldin R. D.; Lockhart M. S.; Kondaveeti S.; Laszik Z.; Esmon C. T.; Heyderman R. S. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. New Engl. J. Med. 2001, 345, 408–416.CrossRefGoogle Scholar
  56. 56.
    Zhang C. Z.; Niu J.; Chong Y. S.; Huang Y. F.; Chu Y.; Xie S. Y.; Jiang Z. H.; Peng L. H. Porous microspheres as promising vehicles for the topical delivery of poorly soluble asiaticoside accelerate wound healing and inhibit scar formation in vitro & in vivo. Eur. J. Pharm. Biopharm. 2016, 109, 1–13.CrossRefGoogle Scholar
  57. 57.
    Van Staden Adu P.; Heunis T.; Smith C.; Deane S.; Dicks L. M. Efficacy of lantibiotic treatment of staphylococcus aureusinduced skin infections, monitored by in vivo bioluminescent imaging. Antimicrob. Agents Chemother. 2016, 60, 3948–55.CrossRefGoogle Scholar
  58. 58.
    Hrabalikova M.; Merchan M.; Ganbold S.; Sedlarik V.; Valasek P.; Saha P. Flexible polyvinyl alcohol/2-hydroxypropanoic acid films: Effect of residual acetyl moieties on mechanical, thermal and antibacterial properties. J. Polym. Eng. 2015, 35, 319–327.CrossRefGoogle Scholar
  59. 59.
    Ricke S. C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci. 2003, 82, 632–639.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei-Ke Xu
    • 1
  • Jing-Yu Tang
    • 1
  • Zhang Yuan
    • 2
  • Cai-Yun Cai
    • 1
  • Xiao-Bin Chen
    • 1
  • Shu-Quan Cui
    • 1
  • Peng Liu
    • 2
  • Lin Yu
    • 1
    Email author
  • Kai-Yong Cai
    • 2
  • Jian-Dong Ding
    • 1
  1. 1.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan UniversityShanghaiChina
  2. 2.Key Laboratory of Biorheological Science and Technology Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina

Personalised recommendations