Synthesis of Eugenol Bio-based Reactive Epoxy Diluent and Study on the Curing Kinetics and Properties of the Epoxy Resin System

  • Bin ChenEmail author
  • Feng Wang
  • Jing-Yu Li
  • Jia-Lu Zhang
  • Yan Zhang
  • Hai-Chao ZhaoEmail author


In this study, monoglycidyl silyl etherated eugenol (GSE) was synthesized as reactive epoxy diluent, and the chemical structure of GSE, intermediates, and products were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H-NMR). GSE existed as a potential bio-based reactive diluent for petroleum-based epoxy resin. The curing kinetics of EP/HHPA/GSE system was studied by non-isothermal DSC method. The kinetics parameters were calculated by using the Kissinger model, Crane model, Ozawa model, and β-T (temperature-heating rate) extrapolation, respectively. In addition, the effects of GSE on the thermo-mechanical properties and thermal stability of EP/HHPA/GSE systems were studied, indicating that GSE can effectively improve the toughness and thermal decomposition temperature of the epoxy system.


Bio-based epoxy Reactive diluent Eugenol Curing kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledged the financial support provided by “One Hundred Talented People” of the Chinese Academy of Sciences–China (No. Y60707WR04) and Natural Science Foundation of Zhejiang Province (No. Y16B040008).


  1. 1.
    Wang X.; Kalali E. N.; Wang D. Y. Renewable cardanolbased surfactant modified layered double hydroxide as a flame retardant for epoxy resin. ACS Sustain. Chem. Eng. 2015, 3, 3281–3290.CrossRefGoogle Scholar
  2. 2.
    Yuan Y. C.; Ye Y. P.; Zhi R. M.; Chen H. B.; Wu J. S.; Qiu Z. M.; Qin S. X.; Yang G. C. Self-healing of low-velocity impact damage in glass fabric/epoxy composites using an epoxymercaptan healing agent. Smart Mater. Struc. 2011, 20, 15–24.CrossRefGoogle Scholar
  3. 3.
    Yuan Y. Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules 2008, 41, 5197–5202.CrossRefGoogle Scholar
  4. 4.
    Tian Q.; Rong M. Z.; Zhang M. Q.; Yuan Y. C. Synthesis and characterization of epoxy with improved thermal remendability based on Diels-Alder reaction. Polym. Int. 2010, 59, 1339–1345.CrossRefGoogle Scholar
  5. 5.
    Guo Y. K.; Li H.; Zhao P. X.; Wang X. F.; Astruc D.; Shuai M. B. Thermo-reversible MWCNTs/epoxy polymer for use in self-healing and recyclable epoxy adhesive. Chinese J. Polym. Sci. 2017, 35, 728–738.CrossRefGoogle Scholar
  6. 6.
    Chen Z. K.; Yang G.; Yang J. P.; Fu S. Y.; Ye L.; Huang Y. G. Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether. Polymer 2009, 50, 1316–1323.CrossRefGoogle Scholar
  7. 7.
    Pineda A. F. E.; Garcia F. G.; Simões A. Z.; Silva E. L. D. Mechanical properties, water absorption and adhesive properties of diepoxy aliphatic diluent-modified DGEBA/Cycloaliphatic amine networks on 316 L stainless steel. Int. J. Adhes. Adhes. 2016, 68, 205–211.CrossRefGoogle Scholar
  8. 8.
    Solodilov V. I.; Gorbatkina Y. A.; Kuperman A. M. The effect of an active diluent on the properties of epoxy resin and unidirectional carbon-fiber-reinforced plastics. Mech. Compos. Mater. 2003, 39, 493–502.CrossRefGoogle Scholar
  9. 9.
    Chen J.; Nie X.; Liu Z. S.; Mi Z.; Zhou Y. H. Synthesis and application of polyepoxide cardanol glycidyl ether as novel biobased polyepoxide reactive diluent for epoxy resin. ACS Sustain. Chem. Eng. 2015, 3, 1164–1171.CrossRefGoogle Scholar
  10. 10.
    Ding J. H.; Rahman O. U.; Wang Q. L.; Peng W. J; Yu H. B. Sustainable graphene suspensions: A reactive diluent for epoxy composite valorization. ACS Sustain. Chem. Eng. 2017, 5, 7792–7799.CrossRefGoogle Scholar
  11. 11.
    Heuts M. P. J.; Jones L. Polymerization of a reactive diluent in the presence of an epoxy-amine material, and coating compositions prepared thereby. 2003 U.S. PCT, 006969.Google Scholar
  12. 12.
    Mustata F.; Rosu D.; Cascaval C. N. Rheological testing of ptert- butylphenol epoxy-acrylic resin in the presence of reactive diluents. Polym. Test. 2000, 19, 927–938.CrossRefGoogle Scholar
  13. 13.
    Wei X. Y.; Zhao B. X.; Shang Y. Z.; Cheng Y. R. Rigid biphenyl- contained epoxy resins with improved thermal resistant properties. Chinese J. Polym. Sci. 2017, 35, 1428–1435.CrossRefGoogle Scholar
  14. 14.
    Lv J. B.; Ma J. Z.; Cheng K.; Chen C.; Hu J. H.; Zeng, K; Yang G. Insights into phthalonitrile/epoxy blends modification system from non-competitive cure system based on alicyclic anhydride. Chinese J. Polym. Sci. 2017, 35, 1561–1571.CrossRefGoogle Scholar
  15. 15.
    Guan F. L.; An F.; Yang J.; Li X. F.; Li X. H.; Yu Z. Z. Fiber-reinforced three-dimensional graphene aerogels for electrically conductive epoxy composites with enhanced mechanical properties. Chinese J. Polym. Sci. 2017, 35, 1381–1390.CrossRefGoogle Scholar
  16. 16.
    Das G.; Karak N. Epoxidized Mesua ferrea L. seed oil-based reactive diluent for BPA epoxy resin and their green nanocomposites. Prog. Org. Coat. 2009, 66, 59–64.Google Scholar
  17. 17.
    Morinaga H.; Kataoka M.; Masuda J.; Kiyokawa Y. Synthesis of partially biobased polymer-bearing reactive epoxy groups in the side chains by radical copolymerization of limonene oxide with methyl acrylate. Polym. Bull. 2013, 70, 1113–1123.CrossRefGoogle Scholar
  18. 18.
    Ménard R.; Negrell C.; Ferry L.; Sonnier R.; David G. Synthesis of biobased phosphorus-containing flame retardants for epoxy thermosets comparison of additive and reactive approaches. Polym. Degrad. Stab. 2015, 120, 300–312.CrossRefGoogle Scholar
  19. 19.
    Morinaga H.; Kiyokawa Y.; Fujikawa R.; Nagai D.; Morikawa H. Partially biobased polyamphiphile-bearing reactive epoxy groups in the side chains and its application to the hydrogel. Polym. Bull. 2014, 71, 2421–2435.CrossRefGoogle Scholar
  20. 20.
    Phalak G.; Patil D.; Vignesh V.; Mhaske S. Development of tri-functional biobased reactive diluent from ricinoleic acid for UV curable coating application. Ind. Crop. Pro. 2018, 119, 9–21.CrossRefGoogle Scholar
  21. 21.
    Yu R. L.; Zhang L. S.; Feng Y. H.; Zhang R. Y.; Zhu J. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese J. Polym. Sci. 2014, 32, 1099–1110.CrossRefGoogle Scholar
  22. 22.
    Wang J. G.; Liu X. Q.; Zhu J. From furan to high quality biobased poly(ethylene furandicarboxylate). Chinese J. Polym. Sci. 2018, 36, 720–727.CrossRefGoogle Scholar
  23. 23.
    Sahoo S. K.; Khandelwal V.; Manik G. Development of toughened bio-based epoxy with epoxidized linseed oil as reactive diluent and cured with bio-renewable crosslinker. Polym. Adv. Technol. 2017.Google Scholar
  24. 24.
    Sahoo S. K.; Mohanty S.; Nayak S. K. Synthesis and characterization of bio-based epoxy blends from renewable resource based epoxidized soybean oil as reactive diluent. Chinese J. Polym. Sci. 2014, 33, 137–152.CrossRefGoogle Scholar
  25. 25.
    Ding J. H.; Peng W. J.; Luo T.; Yu H. B. Study on the curing reaction kinetics of a novel epoxy system. RSC Adv. 2017, 7, 6981–6987.CrossRefGoogle Scholar
  26. 26.
    Shin E.; Ju S. W.; An L.; Ahn E.; Ahn J. S.; Kim B. S.; Ahn B. K. Bioinspired catecholic primers for rigid and ductile dental resin composites. ACS Appl. Mater. Interfaces 2018, 10, 1520–1527.CrossRefGoogle Scholar
  27. 27.
    Qin J. L.; Liu H. Z.; Zhang P.; Wolcott M.; Zhang J. W. Use of eugenol and rosin as feedstocks for biobased epoxy resins and study of curing and performance properties. Polym. Int. 2014, 63, 760–765.CrossRefGoogle Scholar
  28. 28.
    Faye I.; Decostanzi M.; Ecochard Y.; Caillol S. Eugenol biobased epoxy thermosets: From cloves to applied materials. Green Chem. 2017, 19, 5236–5242.CrossRefGoogle Scholar
  29. 29.
    Thirukumaran P.; Shakila A.; Muthusamy S. Synthesis and characterization of novel bio-based benzoxazines from eugenol. RSC Adv. 2014, 4, 7959–7966.CrossRefGoogle Scholar
  30. 30.
    Meher G.; Chakraborty H. Influence of eugenol on the organization and dynamics of lipid membranes: A phase-dependent study. Langmuir 2018, 34, 2344–2351.CrossRefGoogle Scholar
  31. 31.
    Deng J. P.; Yang B.; Chen C.; Liang J. Y. Renewable eugenol- based polymeric oil-absorbent microspheres: Preparation and oil absorption ability. ACS Sustain. Chem. Eng. 2015, 3, 599–605.CrossRefGoogle Scholar
  32. 32.
    Miao J. T.; Yuan L.; Guan Q. B.; Liang G. Z.; Gu A. J. Biobased heat resistant epoxy resin with extremely high biomass content from 2,5-furandicarboxylic acid and eugenol. ACS Sustain. Chem. Eng. 2017, 5, 7003–7011.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShenyang University of Chemical TechnologyShenyangChina
  2. 2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina

Personalised recommendations