Substituent Effects of Pyridyl-methylene Cyclopentadienyl Rare-earth Metal Complexes on Styrene Polymerization

  • Zhen Zhang
  • Zhong-Yi Cai
  • Yu-Peng Pan
  • Yan-Li DouEmail author
  • Shi-Hui Li
  • Dong-Mei Cui


Salt metathesis reactions between pyridyl-methylene-cyclopentadienyl lithium salt and LnCl3 followed by the addition of two equivalents of LiCH2SiMe3 afforded a series of constrained-geometry-configuration rare-earth metal bis(alkyl) complexes (Cp′CH2- Py)Ln(CH2SiMe3)2(THF)n (Py = C5H4N, Cp′ = C5H4 (Cp), Ln = Sc, n = 0 (1); Cp′ = C9H6 (Ind), Ln = Sc, n = 0 (2); Cp′ = 3-Me3Si-C9H5 (3-Me3Si-Ind), Ln = Sc, n = 0 (3a), Ln = Lu (3b), Y (3c), n = 1; Cp′ = 2,7-(tBu)2C13H8 (2,7-(tBu)2-Flu), Ln = Sc (4a), n = 0, Ln = Lu (4b), Y (4c), n = 1) in moderate to good yields, which were characterized by NMR spectroscopy and single-crystal X-ray diffraction (for complex 3a). In the presence of [Ph3C][B(C6F5)4] and AliBu3, these complexes displayed different performances towards styrene polymerization. Rare-earth metal bis(alkyl) precursors bearing Cp, Ind, and 3-Me3Si-Ind segments exhibited very low catalytic activity to afford syndiotactic polystyrene. All electron-donating tBu substituted complexes 4a, 4b, and 4c showed very high activity and perfect syndiotactivity (rrrr > 99%), producing high molecular weight polystyrene (up to 54.1 × 104) with relatively narrow molecular distribution (PDI = 1.28−2.49).


Polystyrene Syndiotactic Rare-earth metal Constrained-geometry configuration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51773193 and 21634007), department of science and technology of Jilin province (No. 20180101171JC), and the “973” project (No. 2015CB654702).

Supplementary material

10118_2019_2209_MOESM1_ESM.pdf (740 kb)
Substituent Effects of Pyridyl-methylene Cyclopentadienyl Rare-earth Metal Complexes on Styrene Polymerization


  1. 1.
    Rodrigues, A. S.; Kirillov, E.; Carpentier, J. F. Group 3 and 4 single-site catalysts for stereospecific polymerization of styrene. Coordin. Chem. Rev. 2008, 252, 2115–2136.CrossRefGoogle Scholar
  2. 2.
    Zinck, P.; Bonnet, F.; Mortreux, A.; Visseaux, M. Functionalization of syndiotactic polystyrene. Prog. Polym. Sci. 2009, 34, 369–392.CrossRefGoogle Scholar
  3. 3.
    Huang, J.; Liu, Z.; Cui, D.; Liu, X. Precisely controlled polymerization of styrene and conjugated dienes by group 3 singlesite catalysts. ChemCatChem 2018, 10, 42–61.CrossRefGoogle Scholar
  4. 4.
    Laur, E.; Kirillov, E.; Carpentier, J. F. Engineering of syndiotactic and isotactic polystyrene-based copolymers via stereoselective catalytic polymerization. Molecules 2017, 22, 594.CrossRefGoogle Scholar
  5. 5.
    Jaymand, M. Recent progress in the chemical modification of syndiotactic polystyrene. Polym. Chem. 2014, 5, 2663–2690.CrossRefGoogle Scholar
  6. 6.
    Schellenberg, J.; Leder, H. J. Syndiotactic polystyrene: Process and applications. Adv. Polym. Tech. 2006, 25, 141–151.CrossRefGoogle Scholar
  7. 7.
    Schellenberg, J.; Tomotsu, N. Syndiotactic polystyrene catalysts and polymerization. Prog. Polym. Sci. 2002, 27, 1925–1982.CrossRefGoogle Scholar
  8. 8.
    Ishihara, N.; Seimiya, T.; Kuramoto, M.; Uoi, M. Crystalline syndiotactic polystyrene. Macromolecules 1986, 19, 2464–2465.CrossRefGoogle Scholar
  9. 9.
    Ishihara, N.; Kuramoto, M.; Uoi, M. Stereospecific polymerization of styrene giving the syndiotactic polymer. Macromolecules 1988, 21, 3356–3360.CrossRefGoogle Scholar
  10. 10.
    Nomura, K. Half-titanocenes containing anionic ancillary donor ligands: Effective catalyst precursors for ethylene/styrene copolymerization. Catalysts 2013, 3, 157.CrossRefGoogle Scholar
  11. 11.
    Xu, C.; Chen, Z.; Ji, G.; Sun, X. L.; Li, J. F.; Tang, Y. (ArO)TiR3 complexes for highly syndiospecific styrene polymerization. J. Mol. Catal. A-Chem. 2014, 383, 77–82.CrossRefGoogle Scholar
  12. 12.
    Luo, Y. J.; Baldamus, J.; Hou, Z. M. Scandium half-metallocene-catalyzed syndiospecific styrene polymerization and styrene-ethylene copolymerization: Unprecedented incorporation of syndiotactic styrene-styrene sequences in styrene-ethylene copolymers. J. Am. Chem. Soc. 2004, 126, 13910–13911.CrossRefGoogle Scholar
  13. 13.
    Kirillov, E.; Lehmann, C. W.; Razavi, A.; Carpentier, J. F. Highly syndiospecific polymerization of styrene catalyzed by allyl lanthanide complexes. J. Am. Chem. Soc. 2004, 126, 12240–12241.CrossRefGoogle Scholar
  14. 14.
    Louyriac, E.; Laur, E.; Welle, A.; Vantomme, A.; Miserque, O.; Brusson, J. M.; Maron, L.; Carpentier, J. F.; Kirillov, E. Experimental and computational investigations on highly syndioselective styrene-ethylene copolymerization catalyzed by allyl ansa-lanthanidocenes. Macromolecules 2017, 50, 9577–9588.CrossRefGoogle Scholar
  15. 15.
    Jian, Z. B.; Cui, D. M.; Hou, Z. M. Rare-earth-metal-hydrocarbyl complexes bearing linked cyclopentadienyl or fluorenyl ligands: Synthesis, catalyzed styrene polymerization, and structure-reactivity relationship. Chem. Eur. J. 2012, 18, 2674–2684.CrossRefGoogle Scholar
  16. 16.
    Liu, D. T.; Luo, Y. J.; Gao, W.; Cui, D. M. Stereoselective polymerization of styrene with cationic scandium precursors bearing quinolyl aniline ligands. Organometallics 2010, 29, 1916–1923.CrossRefGoogle Scholar
  17. 17.
    Jian, Z.; Tang, S.; Cui, D. A lutetium allyl complex that bears a pyridyl-functionalized cyclopentadienyl ligand: Dural catalysis on highly syndiospecific and cis-1,4-selective (co)polymerizations of styrene and butadiene. Chem. Eur. J. 2010, 16, 14007–14015.CrossRefGoogle Scholar
  18. 18.
    Pan, Y. P.; Rong, W. F.; Jian, Z. B.; Cui, D. M. Ligands dominate hsyndioselective polymerization of styrene by using constrained-geometry-configuration rare-earth metal precursors. Macromolecules 2012, 45, 1248–1253.CrossRefGoogle Scholar
  19. 19.
    Lin, F.; Wang, X. B.; Pan, Y. P.; Wang, M. Y.; Liu, B.; Luo, Y.; Cui, D. M. Nature of the entire range of rare earth metalbased cationic catalysts for highly active and syndioselective 19 styrene polymerization. ACS Catal. 2016, 6, 176–185.CrossRefGoogle Scholar
  20. 20.
    Luo, Y. J.; Chen, J. Synthesis, characterization and reactivity of rare-earth metal amide complexes supported by pyrrolyl-substituted cyclopentadienyl ligand. J. Organomet. Chem. 2018, 863, 10–14.CrossRefGoogle Scholar
  21. 21.
    Lei, Y. L.; Wang, Y. B.; Luo, Y. J. Synthesis, characterization, and styrene polymerization catalysis of pyridyl-functionalized indenyl rare earth metal bis(silylamide) complexes. J. Organomet. Chem. 2013, 738, 24–28.CrossRefGoogle Scholar
  22. 22.
    Fang, X. D.; Li, X. F.; Hou, Z. M.; Assoud, J. L.; Zhao, R. 1,2-Azaborolyl-ligated half-sandwich complexes of scandium(III) and lutetium(III): Synthesis, structures, and syndiotactic polymerization of styrene. Organometallics 2009, 28, 517–522.CrossRefGoogle Scholar
  23. 23.
    Peng, D. Q.; Yan, X. W.; Zhang, S. W.; Li, X. F. Syndiotactic polymerization of styrene and copolymerization with ethylene catalyzed by chiral half-sandwich rare-earth metal dialkyl complexes. Chinese J. Polym. Sci. 2018, 36, 222–230.CrossRefGoogle Scholar
  24. 24.
    Jaroschik, F.; Shima, T.; Li, X. F.; Mori, K.; Ricard, L.; Le Goff, X. F.; Nief, F.; Hou, Z. M. Synthesis, characterization, and reactivity of mono(phospholyl)lanthanoid(III) bis(dimethylaminobenzyl) complexes. Organometallics 2007, 26, 5654–5660.CrossRefGoogle Scholar
  25. 25.
    Xu, X.; Chen, Y. F.; Sun, J. Indenyl Abstraction versus Alkyl Abstraction of (Indenyl)ScR2(THF) by (Ph3C)[B(C6F5)4]: A specific and syndiospecific styrene polymerization. Chem. Eur. J. 2009, 15, 846–850.CrossRefGoogle Scholar
  26. 26.
    Li, S.; Liu, D.; Wang, Z.; Cui, D. Development of group 3 catalysts for alternating copolymerization of ethylene and styrene derivatives. ACS Catal. 2018, 6086–6093.Google Scholar
  27. 27.
    Wang, Z.; Wang, M.; Liu, J.; Liu, D.; Cui, D. Rapid syndiospecific (co)polymerization of fluorostyrene with high monomer conversion. Chem. Eur. J. 2017, 23, 18151–18155.CrossRefGoogle Scholar
  28. 28.
    Liu, D. T.; Wang, M. Y.; Wang, Z. C.; Wu, C. J.; Pan, Y. P.; Cui, D. M. Stereoselective copolymerization of unprotected polar and nonpolar stryenes by an yttrium precursor: Control of polar-group distribution and mechanism. Angew. Chem. Int. Ed. 2017, 56, 2714–2719.CrossRefGoogle Scholar
  29. 29.
    Liu, B.; Li, S.; Wang, M.; Cui, D. Coordination polymerization of renewable 3-methylenecyclopentene with rare-earth-metal precursors. Angew. Chem. Int. Ed. 2017, 56, 4560–4564.CrossRefGoogle Scholar
  30. 30.
    Lin, F.; Wu, C. J.; Cui, D. M. Synthesis and characterization of crystalline styrene-b-(ethylene-co-butylene)-b-styrene triblock copolymers. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 1243–1249.CrossRefGoogle Scholar
  31. 31.
    Lin, F.; Wang, M. Y.; Pan, Y. P.; Tang, T.; Cui, D. M.; Liu, B. Sequence and regularity controlled coordination copolymerization of butadiene and styrene: Strategy and mechanism. Macromolecules 2017, 50, 849–856.CrossRefGoogle Scholar
  32. 32.
    Zhang, Z.; Dou, Y.; Li, S.; Cui, D. Highly syndioselective coordination (co)polymerization of isopropenylstyrene. Polym. Chem. 2018, 9, 4476–4482.CrossRefGoogle Scholar
  33. 33.
    Lin, F.; Liu, Z. H.; Wang, T. T.; Cui, D. M. Highly 2,3-selective polymerization of phenylallene and its derivatives with rare-earth metal catalysts: From amorphous to crystalline products. Angew. Chem. Int. Ed. 2017, 56, 14653–14657.CrossRefGoogle Scholar
  34. 34.
    Wang, Z. C.; Liu, D. T.; Cui, D. M. Statistically syndioselective coordination (co)polymerization of 4-methylthiostyrene. Macromolecules 2016, 49, 781–787.CrossRefGoogle Scholar
  35. 35.
    Pan, Y.; Xie, H.; Cui D. Novel constrained-geometry-configuration rare-earth metal precursors to obtain styrene-styrene copolymers. Chinese J. Chem. 2012, 29, 1389–1393.Google Scholar
  36. 36.
    Li, S. H.; Cui, D. M.; Li, D. F.; Hou, Z. M. Highly 3,4-selective polymerization of isoprene with NPN ligand stabilized rareearth metal bis(alkyl)s. Structures and performances. Organometallics 2009, 28, 4814–4822.CrossRefGoogle Scholar
  37. 37.
    Zimmermann, M.; Anwander, R. Homoleptic rare-earth metal complexes containing LnσC s-bonds. Chem. Rev. 2010, 110, 6194–6259.CrossRefGoogle Scholar
  38. 38.
    Wang, B. L.; Wang, D.; Cui, D. M.; Gao, W.; Tang, T.; Chen, X. S.; Jing, X. B. Synthesis of the first rare earth metal bis(alkyl) s bearing an indenyl functionalized N-heterocyclic carbene. Organometallics 2007, 26, 3167–3172.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhen Zhang
    • 1
  • Zhong-Yi Cai
    • 1
  • Yu-Peng Pan
    • 2
  • Yan-Li Dou
    • 1
    Email author
  • Shi-Hui Li
    • 2
  • Dong-Mei Cui
    • 2
  1. 1.Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and EngineeringJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations