Advertisement

NIR Emission Nanoparticles Based on FRET Composed of AIE Luminogens and NIR Dyes for Two-photon Fluorescence Imaging

  • Lei-Jing Liu
  • Wen Liu
  • Guang Ji
  • Zhi-Yuan Wu
  • Bin Xu
  • Jun QianEmail author
  • Wen-Jing TianEmail author
Article
  • 16 Downloads

Abstract

Near-infrared (NIR) nanoparticles (NPs) based on fluorescence resonance energy transfer (FRET) were prepared by coencapsulation of a red aggregation-induced emission (AIE) molecule, 2-(4-bromophenyl)-3-(4-(4-(diphenylamino)styryl)phenyl)fumaronitrile (TB), and a commercial NIR fluorescence dye, silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) with an amphiphilic polymer poly(styrene-co-maleic anhydride) (PSMA). The surface of the NPs, PSMA@TB/NIR775, was modified with poly(ethylene glycol) (PEG) to increase the in vivo biocompatibility of the NPs. The PSMA@TB/NIR775 NPs showed a strong NIR (780 nm) narrow emission and excellent two-photon absorption property. Moreover, the NPs exhibited good monodispersity, stability, and low cytotoxicity. Under the excitation of a 1040 nm femtosecond (fs) laser, the emission peaks at 680 nm of TB and 780 nm of NIR775 excited by FRET were obtained. We utilized PSMA@TB/NIR775 NPs as fluorescent contrast agents for two-photon excited NIR microscopic imaging, and good NIR imaging effect of mouse brain vasculature was obtained with the imaging depth of about 150 μm. The FRET strategy by coencapsulating AIE molecule and NIR dye will be helpful in preparing more narrow emission NIR probes for deep-tissue biological imaging.

Keywords

NIR emission AIE FRET Two-photon imaging Amphiphilic polymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21835001, 51773080, 21674041, 51573068, and 21221063), Program for Changbaishan Scholars of Jilin Province, Jilin Province (No. 20160101305JC), and the “Talents Cultivation Program” of Jilin University.

References

  1. 1.
    Yan, L. L.; Zhang, Y.; Ji, G.; Ma, L.; Chen, J. L.; Xu, B.; Tian, W. J. Multifunctional polymer nanoparticles, ultra bright nearinfrared fluorescence and strong magnetization and their biological applications. RSC Ad. 2016, 6, 65426–65433.CrossRefGoogle Scholar
  2. 2.
    Ji, G.; Yan, L. L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. J. Efficient near–infrared AIE nanoparticles for cell imaging. Acta Chimica Sinica (in Chinese) 2016, 74, 917–922.CrossRefGoogle Scholar
  3. 3.
    Zhang, F. L.; Di, Y. Z.; Li, Y.; Qi, Q. K.; Qian, J. Y.; Fu, X. Q.; Xu, B.; Tian, W. J. Highly efficient far red/near–infrared fluorophores with aggregation–induced emission for bioimaging. Dyes Pigments 2017, 142, 491–498.CrossRefGoogle Scholar
  4. 4.
    Kobat, D.; Horton, N. G.; Xu, C. In vivo two–photon microscopy to 1.6–mm depth in mouse cortex. J. Biomed. Opt. 2011, 16, 106014.CrossRefGoogle Scholar
  5. 5.
    Qian, J.; Wang, D.; Cai, F. H.; Zhan, Q. Q.; Wang, Y. L.; He, S. L. Photosensitizer encapsulated organically modified silica nanoparticles for direct two–photon photodynamic therapy and in vivo functional imaging. Biomaterials 2012, 33, 4851–4860.CrossRefGoogle Scholar
  6. 6.
    Lakowicz, J. R. Plasmonics in biology and plasmon–controlled fluorescence. Plasmonics 2006, 1, 5–33.CrossRefGoogle Scholar
  7. 7.
    Hinds, S.; Myrskog, S.; Levina, L.; Koleilat, G.; Yang, J.; Kelley, S. O.; Sargent, E. H. NIR–emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. J. Am. Chem. Soc. 2007, 129, 7218–7219.CrossRefGoogle Scholar
  8. 8.
    Yong, K. T.; Roy, I.; Ding, H.; Bergey, E. J.; Prasad, P. N. Biocompatible near–infrared quantum dots as ultrasensitive probes for long–term in vi vo imaging applications. Small 2009, 5, 1997–2004.CrossRefGoogle Scholar
  9. 9.
    Dabbousi, B. O.; Rodriguez–Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe) ZnS core–shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.Google Scholar
  10. 10.
    Shi, L. J.; Zhu, C. N.; He, H.; Zhu, D. L.; Zhang, Z. L.; Pang, D. W.; Tian, Z. Q. Near–infrared Ag2Se quantum dots with distinct absorption features and high fluorescence quantum yields. RSC Adv. 2016, 6, 38183–38186.CrossRefGoogle Scholar
  11. 11.
    Wu, C. X.; Zhang, Y. J.; Li, Z.; Li, C. Y.; Wang, Q. B. A novel photoacoustic nanoprobe of ICG@PEG–Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale 2016, 8, 12531–12539.CrossRefGoogle Scholar
  12. 12.
    Han, H. J.; Wang, H. B.; Chen, Y. J.; Li, Z. H.; Wang, Y.; Jin, Q.; Ji, J. Theranostic reduction–sensitive gemcitabine prodrug micelles for near–infrared imaging and pancreatic cancer therapy. Nanoscale 2016, 8, 283–291.CrossRefGoogle Scholar
  13. 13.
    Luo, S. L.; Zhang, E. L.; Su, Y. P.; Cheng, T. M.; Shi, C. M. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127–7138.CrossRefGoogle Scholar
  14. 14.
    Gao, X. H.; Yang, L. L.; Petros, J. A.; Marshal, F. F.; Simons, J. W.; Nie, S. M. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63–72.CrossRefGoogle Scholar
  15. 15.
    Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64–70.CrossRefGoogle Scholar
  16. 16.
    Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339–1386.CrossRefGoogle Scholar
  17. 17.
    Brasseur, N.; Nguyen, T. L.; Langlois, R.; Ouellet, R.; Marengo, S.; Houde, D.; van Lier, J. E. Synthesis and photodynamic activities of silicon 2,3–naphthalocyanine derivatives. J. Med. Chem. 1994, 37, 415–420.CrossRefGoogle Scholar
  18. 18.
    Birks, J. B. in Photophysics of aromatic molecules, Wiley, London, UK, 1970.Google Scholar
  19. 19.
    Tang, B. Z.; Zhan, X.; Yu, G.; Lee, P.; Liu, Y.; Zhu, D. B. Efficient blue emission from siloles. J. Mater. Chem. 2001, 11, 2974–2978.CrossRefGoogle Scholar
  20. 20.
    Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Aggregation–induced emission of 1–methyl–1, 2,3,4,5–pentaphenylsilole. Chem. Commun. 2001, 1740–1741.Google Scholar
  21. 21.
    Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation–induced emission, phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353.Google Scholar
  22. 22.
    Mei, J.; Hong, Y. N.; Lam, J. W. Y.; Qin, A. J.; Tang, Y. H.; Tang, B. Z. Aggregation–induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479.CrossRefGoogle Scholar
  23. 23.
    Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46,2441–2453.Google Scholar
  24. 24.
    Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation–induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.CrossRefGoogle Scholar
  25. 25.
    Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation–induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.CrossRefGoogle Scholar
  26. 26.
    Zhang, X. Y.; Wang, K.; Liu, M. Y.; Zhang, X. Q.; Tao, L.; Chen, Y. W.; Wei, Y. Polymeric AIE–based nanoprobes for biomedical applications: Recent advances and perspectives. Nanoscale 2015, 7, 11486–11508.CrossRefGoogle Scholar
  27. 27.
    Yan, L. L.; Zhang, Y.; Xu, B.; Tian, W. J. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8, 2471–2487.CrossRefGoogle Scholar
  28. 28.
    Zhang, Y.; Chen, Y. J.; Li, X.; Zhang, J. B.; Chen, J. L.; Xu, B.; Fu, X. Q.; Tian, W. J. Folic acid–functionalized AIE Pdots based on amphiphilic PCL––PEG for targeted cell imaging. Polym. Chem. 2014, 5, 3824–3830.CrossRefGoogle Scholar
  29. 29.
    Zhang, X. Q.; Zhang, X. Y.; Wang, S. Q.; Liu, M. Y.; Tao, L.; Wei, Y. Surfactant modification of aggregation–induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale 2013, 5, 147–150.CrossRefGoogle Scholar
  30. 30.
    Qin, W.; Ding, D.; Liu, J. Z.; Yuan, W. Z.; Hu, Y.; Liu, B.; Tang, B. Z. Biocompatible nanoparticles with aggregation–induced emission characteristics as far–red/near–infrared fluorescent bioprobes for in vitro and in vi vo imaging applications. Ad. Funct. Mater. 2012, 22, 771–779.CrossRefGoogle Scholar
  31. 31.
    Geng, J. L.; Li, K.; Ding, D.; Zhang, X. H.; Qin, W.; Liu, J. Z.; Tang, B. Z.; Liu, B. Lipid–PEG–folate encapsulated nanoparticles with aggregation induced emission characteristics: Cellular uptake mechanism and two–photon fluorescence imaging. Small 2012, 8, 3655–3663.CrossRefGoogle Scholar
  32. 32.
    Geng, J. L.; Li, K.; Pu, K. Y.; Ding, D.; Liu, B. Conjugated polymer and gold nanoparticle co–loaded PLGA nanocomposites with eccentric internal nanostructure for dual–modal targeted cellular imaging. Small 2013, 9, 2012–2019.CrossRefGoogle Scholar
  33. 33.
    Li, K.; Qin, W.; Ding, D.; Tomczak, N.; Geng, J. L.; Liu, R. R.; Liu, J. Z.; Zhang, X. H.; Liu, H. W.; Liu, B.; Tang, B. Z. Photostable fluorescent organic dots with aggregation–induced emission (AIE dots) for noninvasive long–term cell tracing. Sci. Rep. 2013, 3, 1150.CrossRefGoogle Scholar
  34. 34.
    Wang, Z. L.; Yan, L. L.; Zhang, L.; Chen, Y. J.; Li, H.; Zhang, J. B.; Zhang, Y.; Li, X.; Xu, B.; Fu, X. Q.; Sun, Z. C.; Tian, W. J. Ultra bright red AIE dots for cytoplasm and nuclear imaging. Polym. Chem. 2014, 5, 7013–7020.CrossRefGoogle Scholar
  35. 35.
    Zhang, Y.; Chang, K. W.; Xu, B.; Chen, J. L.; Yan, L. L.; Ma, S. Q.; Wu, C. F.; Tian, W. J. Highly efficient near–infrared organic dots based on novel AEE fluorogen for specific cancer cell imaging. RSC Ad v. 2015, 5, 36837–36844.CrossRefGoogle Scholar
  36. 36.
    Wang, L.; Tan, W. H. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett. 2006, 6, 84–88.CrossRefGoogle Scholar
  37. 37.
    Zhang, J.; Lakowicz, J. R. A model for DNA detection by metal–enhanced fluorescence from immobilized silver nanoparticles on solid substrate. J. Phys. Chem. B 2006, 110, 2387–2392.CrossRefGoogle Scholar
  38. 38.
    Jin, Y. H.; Ye, F. M.; Zeigler, M.; Wu, C. F.; Chiu, D. T. Nearinfrared fluorescent dye–doped semiconducting polymer dots. ACS Nano 2011, 5, 1468–1475.CrossRefGoogle Scholar
  39. 39.
    Chung, C. Y. S.; Yam, V. W. W. Selective label–free detection of G–quadruplex structure of human telomere by emission spectral changes in visible–and–NIR region under physiological condition through the FRET of a two–component PPE–SO3––Pt(II) complex ensemble with Pt–Pt, electrostatic and n–n interactions. Chem. Sci. 2013, 4, 377–387.CrossRefGoogle Scholar
  40. 40.
    Zhang, X. J.; Yu, J. B.; Rong, Y.; Ye, F. M.; Chiu, D. T.; Uvdal, K. High–intensity near–IR fluorescence in semiconducting polymer dots achieved by cascade FRET strategy. Chem. Sci. 2013, 4, 2143–2151.Google Scholar
  41. 41.
    Wagh, A.; Qian, S. Y.; Law, B. Development of biocompatible polymeric nanoparticles for in vi vo NIR and FRET imaging. Bioconjugate Chem. 2012, 23, 981–992.CrossRefGoogle Scholar
  42. 42.
    Geng, J. L.; Zhu, Z. S.; Qin, W.; Ma, L.; Hu, Y.; Gurzadyan, G. G.; Tang, B. Z.; Liu, B. Near–infrared fluorescence amplified organic nanoparticles with aggregation–induced emission characteristics for in vivo imaging. Nanoscale 2014, 6, 939–945.CrossRefGoogle Scholar
  43. 43.
    Xie, Z. Q.; Yang, B.; Xie, W. J.; Liu, L. L.; Shen, F. Z.; Wang, H. A.; Yang, X. Y.; Wang, Z. M.; Li, Y. P.; Hanif, M.; Yang, G. D.; Ye, L.; Ma, Y. G. A class of nonplanar conjugated compounds with aggregation–induced emission, structural and optical properties of 2,5–diphenyl–1,4–distyrylbenzene derivatives with all cis double bonds. J. Phys. Chem. B 2006, 110, 20993–21000.CrossRefGoogle Scholar
  44. 44.
    Hong, G. S.; Zou, Y. P.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X. D.; Chen, C. X.; Liu, B.; He, Y. H.; Wu, J. Z.; Yuan, J.; Zhang, B.; Tao, Z. M.; Fukunaga, C.; Dai, H. J. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near–infrared window. Nat. Commun. 2014, 5, 4206.CrossRefGoogle Scholar
  45. 45.
    Rust, M. J.; Bates, M.; Zhuang, X. Sub–diffraction–limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–795.CrossRefGoogle Scholar
  46. 46.
    Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott–Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313,1642–1645.CrossRefGoogle Scholar
  47. 47.
    Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2001, 2, 764–774.CrossRefGoogle Scholar
  48. 48.
    Chen, B.; Feng, G. X.; He, B. R.; Goh, C.; Xu, S. D.; Ramos–Ortiz, G.; Aparicio–Ixta, L.; Zhou, J.; Ng, L. G.; Zhao, Z. J.; Liu, B.; Tang, B. Z. Silole–based red fluorescent organic dots for bright two–photon fluorescence in vitro cell and in vivo blood vessel imaging. Small 2016, 12, 782–792.CrossRefGoogle Scholar
  49. 49.
    Lou, X. D.; Zhao, Z. J.; Tang, B. Z. Organic dots based on AIEgens for two–photon fluorescence bioimaging. Small 2016, 12, 6430–6450.CrossRefGoogle Scholar
  50. 50.
    Zhen, S. J.; Wang, S. W.; Li, S. W.; Luo, W. W.; Gao, M.; Ng, L. G.; Goh, C. C.; Qin, A. J.; Zhao, Z. J.; Liu, B.; Tang, B. Z. Efficient red/near–infrared fluorophores based on benzo[1,2–è:4,5–è']dithiophene 1,1,5,5–tetraoxide for targeted photodynamic therapy and in vivo two–photon fluorescence bioimaging. Ad. Funct. Mater. 2018, 28, 1706945.CrossRefGoogle Scholar
  51. 51.
    Shen, X. Y.; Yuan, W. Z.; Liu, Y.; Zhao, Q. L.; Lu, P.; Ma, Y. G.; Williams, I. D.; Qin, A. J.; Sun, J. Z.; Tang, B. Z. Fumaronitrile–based fluorogen, red to near–infrared fluorescence, aggregation–induced emission, solvatochromism, and twisted intramolecular charge transfer. J. Phys. Chem. C 2012, 116, 10541–10547.CrossRefGoogle Scholar
  52. 52.
    Liu, W.; Wang, Y. L; Han, X.; Lu, P.; Zhu, L.; Sun, C. W.; Qian, J.; He, S. L. Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced three–photon near–infrared emission for in vivo brain angiography. Nanoscale 2018, 10, 10025–10032.CrossRefGoogle Scholar
  53. 53.
    Wang, Y.; Hu, R.; Xi, W.; Cai, F.; Wang, S.; Zhu, Z.; Bai, R.; Qian, J. Red emissive AIE nanodots with high two–photon absorption efficiency at 1040 nm for deep–tissue in vi vo imaging. Biomed. Opt. Express 2015, 6, 3783–3794.CrossRefGoogle Scholar
  54. 54.
    Alifu, N.; Yan, L. L.; Zhang, H. Q.; Zebibula, A.; Zhu, Z. G.; Xi, W.; Roe, A. W.; Xu, B.; Tian, W. J.; Qian, J. Organic dye doped nanoparticles with NIR emission and biocompatibility for ultra–deep in vivo two–photon microscopy under 1040 nm femtosecond excitation. Dyes Pigments 2017, 143, 76–85.CrossRefGoogle Scholar
  55. 55.
    Han, X.; Bai, Q.; Yao, L.; Liu, H. C.; Gao, Y.; Li, J. Y.; Liu, L. Q.; Liu, Y. L.; Li, X. X.; Lu, P.; Yang, B. Highly efficient solid–state near–infrared emitting material based on triphenylamine and diphenylfumaronitrile with an EQE of 2.58% in nondoped organic light–emitting diode. Adv. Funct. Mater. 2015, 25, 7521–7529.CrossRefGoogle Scholar
  56. 56.
    Zhu, Z. F.; Qian, J.; Zhao, X. Y.; Qin, W.; Hu, R. R.; Zhang, H. Q.; Li, D. Y.; Xu, Z. P.; Tang, B. Z.; He, S. L. Stable and sizetunable aggregation–induced emission nanoparticles encapsulated with nanographene oxide and applications in three–photon fluorescence bioimaging. ACS Nano 2016, 10, 588–597.CrossRefGoogle Scholar
  57. 57.
    Lakowicz, J. R. in Principles of fluorescence spectroscopy, Springer, Berlin, 3rd ed., 2006.CrossRefGoogle Scholar
  58. 58.
    Polavarapu, L.; Manna, M.; Xu, Q. H. Biocompatible glutathione capped gold clusters as one–and two–photon excitation fluorescence contrast agents for live cells imaging. Nanoscale 2011, 3, 429–434.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Lab for Supramolecular Structure and MaterialsJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, JORCEP (Sino-Swedish Joint Research Center of Photonics)Zhejiang UniversityHangzhouChina

Personalised recommendations