Recent Progress in Fluorescent Vesicles with Aggregation-induced Emission

  • Hui Chen
  • Min-Hui LiEmail author


Fluorescent vesicles have recently attracted increasing attention because of their potential applications in bioimaging, diagnostics, and theranostics, for example, in vivo study of the delivery and the distribution of active substances. However, fluorescent vesicles containing conventional organic dyes often suffer from the problem of aggregation-caused quenching (ACQ) of fluorescence. Fluorescent vesicles working with aggregation-induced emission (AIE) offer an extraordinary tool to tackle the ACQ issue, showing advantages such as high emission efficiency, superior photophysical stability, low background interference, and high sensitivity. AIE fluorescent vesicles represent a new type of fluorescent and functional nanomaterials. In this review, we summarize the recent advances in the development of AIE fluorescent vesicles. The review is organized according to the chemical structures and architectures of the amphiphilic molecules that constitute the AIE vesicles, i.e., small-molecule amphiphiles, amphiphilic polymers, and amphiphilic supramolecules and supramacromolecules. The studies on the applications of these AIE vesicles as stimuli-responsive vesicles, fluorescence-guided drug release carriers, cell imaging tools, and fluorescent materials based on fluorescence resonance energy transfer (FRET) are also discussed.


Vesicles Polymersomes Aggregation-induced emission Small-molecule amphiphiles Amphiphilic polymers Amphiphilic supramolecules Amphiphilic supramacromolecules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the French National Research Agency (No. ANR-16-CE29-0028) and the National Natural Science Foundation of China (Nos. 21604001 and 21528402).


  1. 1.
    Hocine, S.; Li, M. H. Thermoresponsive self-assembled polymer colloids in water. Soft Matter 2013, 9, 5839–5861.CrossRefGoogle Scholar
  2. 2.
    Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol. Rapid Commun. 2009, 30, 267–77.CrossRefGoogle Scholar
  3. 3.
    Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today 2016, 21, 789–801.CrossRefGoogle Scholar
  4. 4.
    Percec, V.; Wilson, D. A.; Leowanawat, P.; Wilson, C. J.; Hughes, A. D.; Kaucher, M. S.; Hammer, D. A.; Levine, D. H.; Kim, A. J.; Bates, F. S.; Davis, K. P.; Lodge, T. P.; Klein, M. L.; DeVane, R. H.; Aqad, E.; Rosen, B. M.; Argintaru, A. O.; Sienkowska, M. J.; Rissanen, K.; Nummelin, S.; Ropponen, J. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 2010, 328, 1009–1014.CrossRefGoogle Scholar
  5. 5.
    Lombardo, D.; Kiselev, M. A.; Magazù, S.; Calandra, P. Amphiphiles self-Assembly: Basic concepts and future perspectives of supramolecular approaches. Adv. Cond. Matter Phys. 2015, 2015, 1–22.CrossRefGoogle Scholar
  6. 6.
    Discher, D. E.; Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 2006, 8, 323–341.CrossRefGoogle Scholar
  7. 7.
    Ahmed, F.; Pakunlu, R. I.; Brannan, A.; Bates, F.; Minko, T.; Discher, D. E. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control. Release 2006, 116, 150–158.CrossRefGoogle Scholar
  8. 8.
    Eloy, J. O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J. P. A.; Lee, R. J.; Marchetti, J. M. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf. B 2014, 123, 345–363.CrossRefGoogle Scholar
  9. 9.
    Antonietti, M.; Förster, S. Vesicles and liposomes: A self-assembly principle beyond lipids. Adv. Mater. 2003, 15, 1323–1333.CrossRefGoogle Scholar
  10. 10.
    Broz, P.; Benito, S. M.; Saw, C.; Burger, P.; Heider, H.; Pfisterer, M.; Marsch, S.; Meier, W.; Hunziker, P. Cell targeting by a generic receptor-targeted polymer nanocontainer platform. J. Control. Release 2005, 102, 475–488.CrossRefGoogle Scholar
  11. 11.
    Lin, Y. S.; Lee, M. Y.; Yang, C. H.; Huang, K. S. Active targeted drug delivery for microbes using nano-carriers. Curr. Top. Med. Chem. 2015, 15, 1525–1531.CrossRefGoogle Scholar
  12. 12.
    De Oliveira, H.; Thevenot, J.; Lecommandoux, S. Smart polymersomes for therapy and diagnosis: Fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 525–546.CrossRefGoogle Scholar
  13. 13.
    Deng, Y.; Ling, J.; Li, M. H. Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane. Nanoscale 2018, 10, 6781–6800.CrossRefGoogle Scholar
  14. 14.
    Li, M. H.; Keller, P. Stimuli-responsive polymer vesicles. Soft Matter 2009, 5, 927–937.CrossRefGoogle Scholar
  15. 15.
    Mabrouk, E.; Cuvelier, D.; Brochard-Wyart, F.; Nassoy, P.; Li, M. H. Bursting of sensitive polymersomes induced by curling. Proc. Natl. Acad. Sci 2009, 106, 7294–7298.CrossRefGoogle Scholar
  16. 16.
    Meng, F. H.; Zhong, Z. Y.; Feijen, J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009, 10, 197–209.CrossRefGoogle Scholar
  17. 17.
    Du, J.; O'Reilly, R. K. Advances and challenges in smart and functional polymer vesicles. Soft Matter 2009, 3544–3561.Google Scholar
  18. 18.
    Smart, T.; Lomas, H.; Massignani, M.; Flores-Merino, M. V.; Perez, L. R.; Battaglia, G. Block copolymer nanostructures. Nano Today 2008, 3, 38–46.CrossRefGoogle Scholar
  19. 19.
    Discher, B. M.; Bermudez, H.; Hammer, D. A.; Discher, D. E.; Won, Y. Y.; Bates, F. S.. Cross-linked polymersome membranes: Vesicles with broadly adjustable properties. J. Phys. Chem. B 2002, 106, 2848–2854.CrossRefGoogle Scholar
  20. 20.
    Kikuchi, K. Design, synthesis and biological application of chemical probes for bio-imaging. Chem. Soc. Rev. 2010, 39, 2048–2053.CrossRefGoogle Scholar
  21. 21.
    Haugland, R. P. in The molecular probes handbook: A guide to fluorescent probes and labeling technologies. Life Technologies: Carlsbad, CA, 2010.Google Scholar
  22. 22.
    Liang, J.; Tang, B. Z.; Liu, B. Specific light-up bioprobes based on AIEgen conjugates. Chem. Soc. Rev. 2015, 44, 2798–2811.CrossRefGoogle Scholar
  23. 23.
    Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y. Aggregation induced emission-based fluorescent nanoparticles: Fabrication methodologies and biomedical applications. J. Mater. Chem. B 2014, 2, 4398–4414.CrossRefGoogle Scholar
  24. 24.
    Yan, L.; Zhang, Y.; Xu, B.; Tian, W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8, 2471–2487.CrossRefGoogle Scholar
  25. 25.
    Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570–6597.CrossRefGoogle Scholar
  26. 26.
    Chen, M.; Yin, M. Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci. 2014, 39, 365–395.CrossRefGoogle Scholar
  27. 27.
    Ghoroghchian, P. P.; Frail, P. R.; Susumu, K.; Blessington, D.; Brannan, A. K.; Bates, F. S.; Chance, B.; Hammer, D. A.; Therien, M. J. Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging. Proc. Natl. Acad. Sci. 2005, 102, 2922–2927.CrossRefGoogle Scholar
  28. 28.
    Kamat, N. P.; Liao, Z.; Moses, L. E.; Rawson, J.; Therien, M. J.; Dmochowski, I. J.; Hammer, D. A. Sensing membrane stress with near IR-emissive porphyrins. Proc. Natl. Acad. Sci. 2011, 108, 13984–13989.CrossRefGoogle Scholar
  29. 29.
    Duncan, T. V.; Ghoroghchian, P. P.; Rubtsov, I. V.; Hammer, D. A.; Therien, M. J. Ultrafast excited-state dynamics of nanoscale near-infrared emissive polymersomes. J. Am. Chem. Soc. 2008, 130, 9773–9784.CrossRefGoogle Scholar
  30. 30.
    Christian, N. A.; Benencia, F.; Milone, M. C.; Li, G.; Frail, P. R.; Therien, M. J.; Coukos, G.; Hammer, D. A. In vivo dendritic cell tracking using fluorescence lifetime imaging and near-infrared-emissive polymersomes. Mol. Imaging Biol. 2009, 11, 167–177.CrossRefGoogle Scholar
  31. 31.
    Birks, J. B. in Photophysics of aromatic molecules. Wiley, New York, 1970.Google Scholar
  32. 32.
    Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 0, 1740–1741.CrossRefGoogle Scholar
  33. 33.
    Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.CrossRefGoogle Scholar
  34. 34.
    Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479.CrossRefGoogle Scholar
  35. 35.
    Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453.CrossRefGoogle Scholar
  36. 36.
    Huang, J.; Yu, Y.; Wang, L.; Wang, X.; Gu, Z.; Zhang, S. Tetraphenylethylene-induced cross-linked vesicles with tunable luminescence and controllable stability. ACS Appl. Mater. Interfaces 2017, 9, 29030–29037.CrossRefGoogle Scholar
  37. 37.
    Nonappa; Maitra, U. Unlocking the potential of bile acids in synthesis, supramolecular/materials chemistry and nanoscience. Org. Biomol. Chem. 2008, 6, 657–669.CrossRefGoogle Scholar
  38. 38.
    Zhang, M.; Yin, X.; Tian, T.; Liang, Y.; Li, W.; Lan, Y.; Li, J.; Zhou, M.; Ju, Y.; Li, G. AIE-induced fluorescent vesicles containing amphiphilic binding pockets and the FRET triggered by host-guest chemistry. Chem. Commun. 2015, 51, 10210–10213.CrossRefGoogle Scholar
  39. 39.
    Dan, N., in Nanostructures for drug delivery, Core-shell drug carriers: Liposomes, polymersomes, and niosomes. Elsevier, 2017, pp 63–105.CrossRefGoogle Scholar
  40. 40.
    Wang, X.; Yang, Y.; Zhuang, Y.; Gao, P.; Yang, F.; Shen, H.; Guo, H.; Wu, D. Fabrication of pH-responsive nanoparticles with an AIE feature for imaging intracellular drug delivery. Biomacromolecules 2016, 17, 2920–2929.CrossRefGoogle Scholar
  41. 41.
    Wang, X.; Yang, Y.; Zuo, Y.; Yang, F.; Shen, H.; Wu, D. Facile creation of FRET systems from a pH-responsive AIE fluorescent vesicle. Chem. Commun. 2016, 52, 5320–5323.CrossRefGoogle Scholar
  42. 42.
    Wang, X.; Yang, Y.; Yang, F.; Shen, H.; Wu, D. pH-triggered decomposition of polymeric fluorescent vesicles to induce growth of tetraphenylethylene nanoparticles for long-term live cell imaging. Polymer 2017, 118, 75–84.CrossRefGoogle Scholar
  43. 43.
    Li, G.; Du, F.; Wang, H.; Bai, R. Synthesis and self-assembly of carbazole-based amphiphilic triblock copolymers with aggregation-induced emission enhancement. React. Funct. Polym. 2014, 75, 75–80.CrossRefGoogle Scholar
  44. 44.
    Ma, C. P.; Chi, Z. G.; Zhou, X.; Zhang, Y.; Liu, S. W.; Xu, J. R. AIE vesicles consisting of tetraphenylethylene-based amphiphilic diblock copolymer with a poly(N-isopropylacrylamide) sequence. J. Control. Release 2013, 172, e95.CrossRefGoogle Scholar
  45. 45.
    Zhao, Y.; Wu, Y.; Yan, G.; Zhang, K. Aggregation-induced emission block copolymers based on ring-opening metathesis polymerization. RSC Adv. 2014, 4, 51194–51200.CrossRefGoogle Scholar
  46. 46.
    Zhao, Y.; Zhu, W.; Ren, L.; Zhang, K. Aggregation-induced emission polymer nanoparticles with pH-responsive fluorescence. Polym. Chem. 2016, 7, 5386–5395.CrossRefGoogle Scholar
  47. 47.
    Zhang, N.; Chen, H.; Fan, Y.; Zhou, L.; Trepout, S.; Guo, J.; Li, M. H. Fluorescent polymersomes with aggregation-induced emission. ACS Nano 2018, 12, 4025–4035.CrossRefGoogle Scholar
  48. 48.
    Liu, Q.; Xia, Q.; Wang, S.; Li, B. S.; Tang, B. Z. In situ visualizable self-assembly, aggregation-induced emission and circularly polarized luminescence of tetraphenylethene and alaninebased chiral polytriazole. J. Mater. Chem. C 2018, 6, 4807–4816.CrossRefGoogle Scholar
  49. 49.
    Wang, C.; Wang, Z. Q.; Zhang, X. Amphiphilic building blocks for self-assembly: From amphiphiles to supra-amphiphiles. Acc. Chem. Res. 2012, 45, 608–618.CrossRefGoogle Scholar
  50. 50.
    Zhang, X.; Wang, C. Supramolecular amphiphiles. Chem. Soc. Rev. 2011, 40, 94–101.CrossRefGoogle Scholar
  51. 51.
    Chen, L. J.; Ren, Y. Y.; Wu, N. W.; Sun, B.; Ma, J. Q.; Zhang, L.; Tan, H.; Liu, M.; Li, X.; Yang, H. B. Hierarchical self-assembly of discrete organoplatinum(II) metallacycles with polysaccharide via electrostatic interactions and their application for heparin detection. J. Am. Chem. Soc. 2015, 137, 11725–11735.CrossRefGoogle Scholar
  52. 52.
    Zheng, W.; Yang, G.; Jiang, S. T.; Shao, N.; Yin, G. Q.; Xu, L.; Li, X.; Chen, G.; Yang, H. B. A tetraphenylethylene (TPE)-based supra-amphiphilic organoplatinum(II) metallacycle and its self-assembly behaviour. Mater. Chem. Front. 2017, 1, 1823–1828.CrossRefGoogle Scholar
  53. 53.
    Zhang, C. W.; Ou, B.; Jiang, S. T.; Yin, G. Q.; Chen, L. J.; Xu, L.; Li, X.; Yang, H. B. Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polym. Chem. 2018, 9, 2021–2030.CrossRefGoogle Scholar
  54. 54.
    Chi, X.; Zhang, H.; Vargas-Zuniga, G. I.; Peters, G. M.; Sessler, J. L. A Dual-responsive bola-type supra-amphiphile constructed from a water-soluble calix[4] pyrrole and a tetraphenylethene-containing pyridine bis-N-oxide. J. Am. Chem. Soc. 2016, 138, 5829–5832.CrossRefGoogle Scholar
  55. 55.
    Li, J.; Shi, K.; Drechsler, M.; Tang, B. Z.; Huang, J.; Yan, Y. A supramolecular fluorescent vesicle based on a coordinating aggregation induced emission amphiphile: Insight into the role of electrical charge in cancer cell division. Chem. Commun. 2016, 52, 12466–12469.CrossRefGoogle Scholar
  56. 56.
    Li, J.; Liu, K.; Chen, H.; Li, R.; Drechsler, M.; Bai, F.; Huang, J.; Tang, B. Z.; Yan, Y. Functional built-in template directed siliceous fluorescent supramolecular vesicles as diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 21706–21714.CrossRefGoogle Scholar
  57. 57.
    Li, J.; Liu, K.; Han, Y.; Tang, B. Z.; Huang, J.; Yan, Y. Fabrication of propeller-shaped supra-amphiphile for construction of enzyme-responsive fluorescent vesicles. ACS Appl. Mater. Interfaces 2016, 8, 27987–27995.CrossRefGoogle Scholar
  58. 58.
    Wei, Y.; Wang, L.; Huang, J.; Zhao, J.; Yan, Y. Multifunctional metallo-organic vesicles displaying aggregation-Induced emission: Two-photon cell-Imaging, drug delivery, and specific detection of zinc ion. ACS Appl. Nano Mater. 2018, 1, 1819–1827.CrossRefGoogle Scholar
  59. 59.
    Kong, Q.; Zhuang, W.; Li, G.; Jiang, Q.; Wang, Y. Cation-anion interaction-directed formation of functional vesicles and their biological application for nucleus-specific imaging. New J. Chem. 2018, 42, 9187–9192.CrossRefGoogle Scholar
  60. 60.
    He, L.; Liu, X.; Liang, J.; Cong, Y.; Weng, Z.; Bu, W. Fluorescence responsive conjugated poly(tetraphenylethene) and its morphological transition from micelle to vesicle. Chem. Commun. 2015, 51, 7148–7151.CrossRefGoogle Scholar
  61. 61.
    Ji, X. F.; Li, Y.; Wang, H.; Zhao, R.; Tang, G. P.; Huang, F. H. Facile construction of fluorescent polymeric aggregates with various morphologies by self-assembly of supramolecular amphiphilic graft copolymers. Polym. Chem. 2015, 6, 5021–5025.CrossRefGoogle Scholar
  62. 62.
    Shen, J.; Pang, J.; Xu, G.; Xin, X.; Yang, Y.; Luan, X.; Yuan, S. Smart stimuli-responsive fluorescent vesicular sensor based on inclusion complexation of cyclodextrins with Tyloxapol. RSC Adv. 2016, 6, 11683–11690.CrossRefGoogle Scholar
  63. 63.
    Shen, J.; Wang, Z.; Sun, D.; Xia, C.; Yuan, S.; Sun, P.; Xin, X. pH-responsive nanovesicles with enhanced emission co-assembled by Ag(I) nanoclusters and polyethyleneimine as a superior sensor for Al3+. ACS Appl. Mater. Interfaces 2018, 10, 3955–3963.CrossRefGoogle Scholar
  64. 64.
    Zhang, X.; Rehm, S.; Safont-Sempere, M. M.; Würthner, F. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems. Nat. Chem. 2009, 1, 623–629.CrossRefGoogle Scholar
  65. 65.
    Sapsford, K. E.; Berti, L.; Medintz, I. L. Fluorescence resonance energy transfer: Concepts, applications and advances. Minerva. Biotecnol. 2004, 16, 247–273.Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chimie ParisTechPSL University Paris, CNRS, Institut de Recherche de Chimie ParisParisFrance
  2. 2.Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations