Synthesis of Alkyne-functionalized Polymers via Living Anionic Polymerization and Investigation of Features during the Post-“thiol-yne” Click Reaction

  • Lin-Can Yang
  • Li Han
  • Hong-Wei MaEmail author
  • Pi-Bo Liu
  • He-Yu Shen
  • Chao Li
  • Song-Bo Zhang
  • Yang Li


“Thiol-yne” click reaction has already been widely applied in synthesis and modification of new polymer structures or novel materials due to its specific features. However, in most studies, only chain-end strategy was employed when using the di-addition feature of thiol-yne reaction, thus the in-chain di-addition strategy could endow us with a broader space to develop the synthesis of advanced polymers. Therefore, in this paper, the features of in-chain mono- and di-addition were investigated when modifying the alkyne-functionalized polymers to prepare grafted polymers via thiol-yne click reaction. The results showed that it is almost impossible to obtain the in-chain di-adducts even under excess feeding of chain-end thiol-functionalized grafts, while only the in-chain mono-adducts could be obtained efficiently. Further researches investigated that the controlled grafting could be encountered when carrying out the thiol-yne click reaction between chain-end alkyne-functionalized polystyrenes and chain-end thiol-functionalized polystyrenes under proper feedings. Therefore, the effect of steric-hindrance might be the primary reason for the alternative grafting via thiol-yne click reaction between in-chain and chain-end alkyne-functionalized polymers.


Alkyne-functionalized polymers In-chain di-addition Thiol-yne click reaction Living anionic polymerization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21871037, 21674017, and U1508204).


  1. 1.
    Leophairatana, P.; Samanta, S.; de Silva, C. C.; Koberstein, J. T. Preventing alkyne–alkyne (i.e., Glaser) coupling associated with the ATRP synthesis of alkyne–functional polymers/macromonomers and for alkynes under click (i.e., CuAAC) reaction conditions. J. Am. Chem. Soc. 2017, 139, 3756–3766.CrossRefGoogle Scholar
  2. 2.
    Wang, J.; Mei, J.; Zhao, E.; Song, Z.; Qin, A.; Sun, J. Z.; Tang, B. Z. Ethynyl–capped hyperbranched conjugated polytriazole: Click polymerization, clickable modification, and aggregationenhanced emission. Macromolecules 2012, 45, 7692–7703.CrossRefGoogle Scholar
  3. 3.
    Dai, Y.; Zhang, X.; Xia, F. Click chemistry in functional aliphatic polycarbonates. Macromol. Rapid Commun. 2017, 38, 1700357.CrossRefGoogle Scholar
  4. 4.
    Tang, H.; Li, Y.; Lahasky, S. H.; Sheiko, S. S.; Zhang, D. Coreshell molecular bottlebrushes with helical polypeptide backbone: Synthesis, characterization, and solution conformations. Macromolecules 2011, 44, 1491–1499.CrossRefGoogle Scholar
  5. 5.
    Yang, K.; Huang, X.; Zhu, M.; Xie, L.; Tanaka, T.; Jiang, P. Combining RAFT polymerization and thiol–ene click reaction for core–shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability. ACS Appl. Mater. Interfaces 2014, 6, 1812–1822.CrossRefGoogle Scholar
  6. 6.
    Xiao, L.; Chen, Y.; Zhang, K. Efficient metal–free "grafting onto" method for bottlebrush polymers by combining RAFT and triazolinedione–diene click reaction. Macromolecules 2016, 49, 4452–4461.CrossRefGoogle Scholar
  7. 7.
    Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Ange w. Chem. Int. Ed. 2001, 40, 2004–2021.Google Scholar
  8. 8.
    Binder, W. H.; Sachsenhofer, R. 'Click' chemistry in polymer and materials science. Macromol. Rapid Commun. 2007, 28, 15–54.CrossRefGoogle Scholar
  9. 9.
    Golas, P. L.; Matyjaszewski, K. Marrying click chemistry with polymerization: Expanding the scope of polymeric materials. Chem. Soc. Re. 2010, 39, 1338–1354.CrossRefGoogle Scholar
  10. 10.
    Samad, A. A.; Bethry, A.; Janouskova, O.; Ciccione, J.; Wenk, C.; Coll, J. L.; Subra, G.; Etrych, T.; Omar, F. E.; Bakkour, Y.; Coudane, J.; Nottelet, B. Iterative photoinduced chain functionalization as a generic platform for advanced polymeric drug delivery systems. Macromol. Rapid Commun. 2018, 39, 1700502.CrossRefGoogle Scholar
  11. 11.
    Yang, W. J.; Zhao, T.; Zhou, P.; Chen, S.; Gao, Y.; Liang, L.; Wang, X.; Wang, L. "Click" functionalization of dual stimuliresponsive polymer nanocapsules for drug delivery systems. Polym. Chem. 2017, 8, 3056–3065.CrossRefGoogle Scholar
  12. 12.
    Huynh, V. T.; Chen, G.; de Souza, P.; Stenzel, M. H. Thiol–yne and thiol–ene "click" chemistry as a tool for a variety of platinum drug delivery carriers, from statistical copolymers to crosslinked micelles. Biomacromolecules 2011, 12, 1738–1751.CrossRefGoogle Scholar
  13. 13.
    Pan, Y.; Bao, H.; Sahoo, N. G.; Wu, T.; Li, L. Water–soluble poly(–isopropylacrylamide)–graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater. 2011, 21, 2754–2763.CrossRefGoogle Scholar
  14. 14.
    Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical–biology applications. Chem. Rev. 2013, 113, 4905–4979.CrossRefGoogle Scholar
  15. 15.
    Brummelhuis, N. T.; Schlaad, H. Stimuli–responsive star polymers through thiol–yne core functionalization/crosslinking of block copolymer micelles. Polym. Chem. 2011, 2, 1180–1184.CrossRefGoogle Scholar
  16. 16.
    Cai, T.; Li, M.; Neoh, K. G.; Kang, E. T. Preparation of stimuli responsive polycaprolactone membranes of controllable porous morphology via combined atom transfer radical polymerization, ring–opening polymerization and thiol–yne click chemistry. J. Mater. Chem. 2012, 22, 16248–16258.CrossRefGoogle Scholar
  17. 17.
    Li, Y.; Zhou, C.; Xu, L.; Yao, F.; Cen, L.; Fu, G. D. Stimuli–responsive hydrogels prepared by simultaneous "click chemistry" and metal–ligand coordination. RSC Adv. 2015, 5, 18242–18251.CrossRefGoogle Scholar
  18. 18.
    del Prado, A.; Navarro, R.; Levkin, P.; Gallardo, A.; Elvira, C.; Reinecke, H. Dual stimuli–responsive polyamines derived from modified–vinylpyrrolidones through CuAAC click chemistry. J. Polym. Sci., Part A: Polym. Chem. 2016, 54,1098–1108.Google Scholar
  19. 19.
    Castro, V.; Rodriguez, H.; Albericio, F. CuAAC: An efficient click chemistry reaction on solid phase. ACS Comb. Sci. 2016, 18, 1–14.CrossRefGoogle Scholar
  20. 20.
    Marrocchi, A.; Facchetti, A.; Lanari, D.; Santoro, S.; Vaccaro, L. Click–chemistry approaches to–conjugated polymers for organic electronics applications. Chem. Sci. 2016, 7, 6298–6308.CrossRefGoogle Scholar
  21. 21.
    Ma, H.; Wang, Q.; Sang, W.; Han, L.; Liu, P.; Sheng, H.; Wang, Y.; Li, Y. Facile synthesis of DendriMac polymers via the combination of living anionic polymerization and highly efficient coupling reactions. Macromol. Rapid Commun. 2016, 37, 168–173.CrossRefGoogle Scholar
  22. 22.
    Takise, R.; Muto, K.; Yamaguchi, J. Cross–coupling of aromatic esters and amides. Chem. Soc. Rev. 2017, 46, 5864–5888.CrossRefGoogle Scholar
  23. 23.
    Farmer, T. J.; Clark, J. H.; Macquarrie, D. J.; Ogunjobi, J. K.; Castle, R. L. Post–polymerisation modification of bio–derived unsaturated polyester resins via Michael additions of 1,3–dicarbonyls. Polym. Chem. 2016, 7, 1650–1658.CrossRefGoogle Scholar
  24. 24.
    Ma, H.; Han, L.; Li, Y. Sequence determination and regulation in the living anionic copolymerization of styrene and 1,1–diphenylethylene (DPE) derivatives. Macromol. Chem. Phys. 2017, 218, 1600420.Google Scholar
  25. 25.
    Wang, Q.; Ma, H.; Sang, W.; Han, L.; Liu, P.; Shen, H.; Huang, W.; Gong, X.; Yang, L.; Wang, Y.; Li, Y. Synthesis of sequence–determined bottlebrush polymers based on sequence determination in living anionic copolymerization of styrene and dimethyl(4–(1–phenylvinyl)phenyl)silane. Polym. Chem. 2016, 7, 3090–3099.CrossRefGoogle Scholar
  26. 26.
    Han, L.; Ma, H.; Li, Y.; Wu, J.; Xu, H.; Wang, Y. Construction of topological macromolecular side chains packing model: Study unique relationship and differences in LC–microstructures and properties of two analogous architectures with welldesigned side attachment density. Macromolecules 2015, 48, 925–941.CrossRefGoogle Scholar
  27. 27.
    Han, L.; Ma, H.; Li, Y.; Zhu, S.; Yang, L.; Tan, R.; Liu, P.; Shen, H.; Huang, W.; Gong, X. Strategies for tailoring LCfunctionalized polymer: Probe contribution of [Si—O—Si] versus [Si—C] spacer to thermal and polarized optical performance "driven by" well–designed grafting density and precision in flexible/rigid matrix. Macromolecules 2016, 49, 5350–5365.CrossRefGoogle Scholar
  28. 28.
    Liu, H.; Pan, W.; Tong, M.; Zhao, Y. Synthesis and properties of couplable ABCDE star copolymers by orthogonal CuAAC and Diels–Alder click reactions. Polym. Chem. 2016, 7, 1603–1611.CrossRefGoogle Scholar
  29. 29.
    Deng, M.; Guo, F.; Liao, D.; Hou, Z.; Li, Y. Aluminium–catalyzed terpolymerization of furfuryl glycidyl ether with epichlorohydrin and ethylene oxide: Synthesis of thermoreversible polyepichlorohydrin elastomers with furan/maleimide covalent crosslinks. Polym. Chem. 2018, 9, 98–107.CrossRefGoogle Scholar
  30. 30.
    Wang, A.; Niu, H.; He, Z.; Li, Y. Thermoreversible cross–linking of ethylene/propylene copolymer rubbers. Polym. Chem. 2017, 8, 4494–4502.CrossRefGoogle Scholar
  31. 31.
    Lowe, A. B. Thiol–ene "click" reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1, 17–36.CrossRefGoogle Scholar
  32. 32.
    Yu, B.; Chan, J. W.; Hoyle, C. E.; Lowe, A. B. Sequential thiol–ene/thiol–ene and thiol–ene/thiol–yne reactions as a route to well–defined mono and bis end–functionalized poly(A–isopropylacrylamide). J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3544–3557.CrossRefGoogle Scholar
  33. 33.
    Lowe, A. B. Thiol–yne 'click'/coupling chemistry and recent applications in polymer and materials synthesis and modification. Polymer 2014, 55, 5517–5549.CrossRefGoogle Scholar
  34. 34.
    Kiskan, B.; Weber, J. Versatile postmodification of conjugated microporous polymers using thiol–yne chemistry. ACS Macro Lett. 2012, 1, 37–40.CrossRefGoogle Scholar
  35. 35.
    Wang, W.; Shi, Y.; Wang, X.; Qin, A.; Sun, J. Z.; Tang, B. Z. A novel post–polymerization modification route to functional poly(disubstituted acetylenes) through phenol–yne click reaction. Polym. Chem. 2017, 8,2630–2639.Google Scholar
  36. 36.
    Hoogenboom, R. Thiol–yne chemistry: A powerful tool for creating highly functional materials. Angew. Chem. Int. Ed. 2010, 49, 3415–3417.CrossRefGoogle Scholar
  37. 37.
    Li, H.; Yu, B.; Matsushima, H.; Hoyle, C. E.; Lowe, A. B. The Thiol–isocyanate click reaction: Facile and quantitative access to ш–end–functional poly(A A–diethylacrylamide) synthesized by RAFT radical polymerization. Macromolecules 2009, 42, 6537–6542.CrossRefGoogle Scholar
  38. 38.
    Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V. Synthesis of dendrimers through divergent iterative thio–bromo "click" chemistry. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3931–3939.CrossRefGoogle Scholar
  39. 39.
    Xu, J.; Tao, L.; Boyer, C.; Lowe, A. B.; Davis, T. P. Combining thio–bromo "click" chemistry and RAFT polymerization: A powerful tool for preparing functionalized multiblock and hyperbranched polymers. Macromolecules 2010, 43,20–24.Google Scholar
  40. 40.
    Nieto–Orellana, A.; di Antonio, M.; Conte, C.; Falcone, F. H.; Bosquillon, C.; Childerhouse, N.; Mantovani, G.; Stolnik, S. Effect of polymer topology on non–covalent polymer–protein complexation: Miktoarm versus linear mPEG–poly(glutamic acid) copolymers. Polym. Chem. 2017, 8,2210–2220.Google Scholar
  41. 41.
    Aoki, D.; Uchida, S.; Takata, T. Star/linear polymer topology transformation facilitated by mechanical linking of polymer chains. Angew. Chem. Int. Ed. 2015, 54, 6770–6774.CrossRefGoogle Scholar
  42. 42.
    Lutz, J. F.; Lehn, J. M.; Meijer, E. W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 2016,1, 16024.Google Scholar
  43. 43.
    Shi, Y.; Cao, X.; Luo, S.; Wang, X.; Graff, R. W.; Hu, D.; Guo, R.; Gao, H. Investigate the glass transition temperature of hyperbranched copolymers with segmented monomer sequence. Macromolecules 2016, 49, 4416–4422.CrossRefGoogle Scholar
  44. 44.
    Laure, C.; Karamessini, D.; Milenkovic, O.; Charles, L.; Lutz, J. F. Coding in 2D: Using intentional dispersity to enhance the information capacity of sequence–coded polymer barcodes. Angew. Chem. Int. Ed. 2016, 55, 10722–10725.CrossRefGoogle Scholar
  45. 45.
    Zydziak, N.; Konrad, W.; Feist, F.; Afonin, S.; Weidner, S.; Barner–Kowollik, C. Coding and decoding libraries of sequence–defined functional copolymers synthesized via photoligation. Nat. Commun. 2016, 7, 13672.CrossRefGoogle Scholar
  46. 46.
    Yang, L.; Ma, H.; Han, L.; Liu, P.; Shen, H.; Li, C.; Li, Y. Sequence features of sequence–controlled polymers synthesized by 1,1–diphenylethylene derivatives with similar reactivity during living anionic polymerization. Macromolecules 2018, 51, 5891–5903.CrossRefGoogle Scholar
  47. 47.
    Ma, H.; Wang, Q.; Sang, W.; Han, L.; Liu, P.; Chen, J.; Li, Y.; Wang, Y. Synthesis of bottlebrush polystyrenes with uniform, alternating, and gradient distributions of brushes via living anionic polymerization and hydrosilylation. Macromol. Rapid Commun. 2015, 36, 726–732.CrossRefGoogle Scholar
  48. 48.
    Liu, P.; Ma, H.; Han, L.; Yang, L.; Shen, H.; Li, C.; Li, Y. The effect of amine–functionalized 1,1–diphenylethylene (DPE) derivatives on end–capping reactions and the simulation of their precision for sequence control. Polymer 2018, 147, 157–163.CrossRefGoogle Scholar
  49. 49.
    Huang, W.; Ma, H.; Han, L.; Liu, P.; Yang, L.; Shen, H.; Hao, X.; Li, Y. Synchronous regulation of periodicity and monomer sequence during living anionic copolymerization of styrene and dimethyl–[4–(1–phenylvinyl)phenyl] silane (DPE–SiH). Macromolecules 2018, 51, 3746–3757.CrossRefGoogle Scholar
  50. 50.
    Yang, L.; Ma, H.; Han, L.; Hao, X.; Liu, P.; Shen, H.; Li, Y. Synthesis of a sequence–controlled in–chain alkynyl/tertiary amino dual–functionalized terpolymer via living anionic polymerization. Polym. Chem. 2018, 9, 108–120.CrossRefGoogle Scholar
  51. 51.
    Sang, W.; Ma, H.; Wang, Q.; Hao, X.; Zheng, Y.; Wang, Y.; Li, Y. Monomer sequence determination in the living anionic copolymerization of styrene and asymmetric bi–functionalized 1,1–diphenylethylene derivatives. Polym. Chem. 2016, 7, 219–234.CrossRefGoogle Scholar
  52. 52.
    Liu, P.; Ma, H.; Huang, W.; Han, L.; Hao, X.; Shen, H.; Bai, Y.; Li, Y. Sequence regulation in the living anionic copolymerization of styrene and 1–(4–dimethylaminophenyl)–1–phenylethylene by modification with different additives. Polym. Chem. 2017, 8, 1778–1789.CrossRefGoogle Scholar
  53. 53.
    Liu, P.; Ma, H.; Huang, W.; Shen, H.; Wu, L.; Li, Y.; Wang, Y. The determination of sequence distribution in the living anionic copolymerization of styrene and strong electron–donating DPE derivative–1,1–bis(4–N,N–dimethylanimophenyl)ethylene. Polymer 2016, 97, 167–173.CrossRefGoogle Scholar
  54. 54.
    Natalello, A.; Hall, J. N.; Eccles, E. A.; Kimani, S. M.; Hutchings, L. R. Kinetic control of monomer sequence distribution in living anionic copolymerization. Macromol. Rapid Commun. 2011, 32,233–237.Google Scholar
  55. 55.
    Hutchings, L. R; Brooks P. P.; Parker D.; Mosely, J. A.; Sevinc, S. Monomer sequence control via living anionic copolymerization: Synthesis of alternating, statistical, and telechelic copolymers and sequence analysis by MALDI ToF mass spectrometry. Macromolecules 2015, 48, 610–628.CrossRefGoogle Scholar
  56. 56.
    Lowe, A. B. Thiol–ene "click" reactions and recent applications in polymer and materials synthesis: A first update. Polym. Chem. 2014, 5, 4820–4870.CrossRefGoogle Scholar
  57. 57.
    Hardman, S. J.; Muhamad–Sarih, N.; Riggs, H. J.; Thompson, R. L.; Rigby, J.; Bergius, W. N. A.; Hutchings, L. R. Electrospinning superhydrophobic fibers using surface segregating end–functionalized polymer additives. Macromolecules, 2011, 44, 6461–6470.CrossRefGoogle Scholar
  58. 58.
    Pagliarulo, A.; Hutchings, L. R. End–functionalized chains via anionic polymerization: Can the problems with using diphenylethylene derivatives be solved by using bisphenol F? Macromol. Chem. Phys. 2018, 219, 1700386.CrossRefGoogle Scholar
  59. 59.
    Günther, B.; Rall, B. C.; Ferlian, O.; Scheu, S.; Eitzinger, B. Variations in prey consumption of centipede predators in forest soils as indicated by molecular gut content analysis. Oikos 2014, 123, 1192–1198.CrossRefGoogle Scholar
  60. 60.
    Yuan, Y. Y.; Du, Q.; Wang, Y. C.; Wang, J. One–pot syntheses of amphiphilic centipede–like brush copolymers via combination of ring–opening polymerization and "click" chemistry. Macromolecules 2010, 43, 1739–1746.CrossRefGoogle Scholar
  61. 61.
    Goodwin, A.; Kang, N. G.; Mays, J. W. Graft and Comblike Polymers. In Anionic Polymerization. Hadjichristidis, N., Hirao, A. (eds) Springer, Tokyo, 2015.Google Scholar
  62. 62.
    Sun, T.; Li, K.; Li, Y.; Li, C.; Zhao, W.; Chen, L.; Chang, Y. Optimizing conditions for encapsulation of QDs by varying PEG chain density of amphiphilic centipede–like copolymer coating and exploration of QDs probes for tumor cell targeting and tracking. New J. Chem. 2012, 36, 2383–2391.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lin-Can Yang
    • 1
  • Li Han
    • 1
  • Hong-Wei Ma
    • 1
    Email author
  • Pi-Bo Liu
    • 1
  • He-Yu Shen
    • 1
  • Chao Li
    • 1
  • Song-Bo Zhang
    • 1
  • Yang Li
    • 1
  1. 1.Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations