Advertisement

Synthesis and Characterization of Easily Colored Meta-aramid Copolymer Containing Ether Bonds

  • Na Li
  • Xing-Ke Zhang
  • Jun-Rong YuEmail author
  • Yan Wang
  • Jing Zhu
  • Zu-Ming Hu
Article
  • 11 Downloads

Abstract

This work described the preparation of easily colored meta-aramid (PMIA) copolymers from m-phenylenediamine (MPD), isophthaloyl dichloride (IPC), and 3,4′-oxydianiline (3,4′-ODA) via solution polycondensation in N,N-dimethylacetamide (DMAc). The novel co-PMIAs were obtained in relatively high inherent viscosities ranging from 1.32 dL/g to 2.53 dL/g, which could be easily cast into flexible films with high transparence or spun into fibers. All the newly synthesized copolymers possessed excellent thermal stabilities even better than that of commercial PMIA, with 5% weight loss temperatures higher than 430 °C in nitrogen measured by TGA and glass transition temperature of 267–277 °C measured by DSC. The cast films exhibited good mechanical properties with a tensile strength up to 107 MPa and a tensile modulus up to 2.2 GPa. The resultant PMIAs also showed good solubility and better dye ability for cationic dyes.

Keywords

Copolymerized meta-aramid Solution polycondensation Dyeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51473031) and the Shanghai International S&T Cooperation Fund (No. 16160731302).

References

  1. 1.
    Trigo–López, M.; Miguel–Ortega, Á.; Vallejos, S.; Muñoz, A.; Izquierdo, D.; Colina, Á.; Garcia, F. C.; García, J. M. Intrinsically colored wholly aromatic polyamides (aramids). Dyes and Pigments 2015,122, 177–183.CrossRefGoogle Scholar
  2. 2.
    Horrocks, A. R. Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polym. Degrad. Stabil. 2011, 96, 377–392.CrossRefGoogle Scholar
  3. 3.
    Kim, E. M.; Choi, J. H. Dyeing properties and color fastness of 100%–aramid fiber. Fiber. Polym. 2011, 12, 484–490.CrossRefGoogle Scholar
  4. 4.
    Manyukov, E. A.; Sadova, S. F.; Kecek’Yan, A. S.; Puzikova, N. P.; Baeva, N. N. Heat–resistant para/meta–aramid fiber Arlana: Dyeing and the properties of the dyed materials. Theor. Found. Chem. Eng. 2007, 41, 698–702.CrossRefGoogle Scholar
  5. 5.
    Nimmanpipug, P.; Tashiro, K.; Maeda, Y.; Rangsiman, O. Factors governing the three–dimensional hydrogen bond network structure of poly(m–phenylene isophthalamide) and a series of its model compounds: (1) Systematic classification of structures analyzed by the X–ray diffraction method. J. Phys. Chem. B 2002, 106, 6842–6848.CrossRefGoogle Scholar
  6. 6.
    Kim, T.; Kim, G.; Park, J. Y.; Lim, J. S.; Yoo, K. P. Solubility measurement and dyeing performance evaluation of aramid NOMEX yarn by dispersed dyes in supercritical carbon dioxide. Ind. Eng. Chem. Res. 2005, 45, 3425–3433.CrossRefGoogle Scholar
  7. 7.
    Ouyang, S.; Wang, T.; Yu, Y.; Yang, B.; Yao, J.; Wang, S. From trans to cis conformation: Further understanding the surface properties of poly(m–phenylene isophthalamide). ACS Omega 2017, 2, 290–298.CrossRefGoogle Scholar
  8. 8.
    Islam, M. T.; Aimone, F.; Ferri, A.; Rovero, G. Use of Nmethylformanilide as swelling agent for meta–aramid fibers dyeing: Kinetics and equilibrium adsorption of Basic Blue 41. Dyes and Pigments 2015, 113, 554–561.CrossRefGoogle Scholar
  9. 9.
    Kim, E. M.; Jang, J. Surface modification of meta–aramid films by UV/ozone irradiation. Fiber. Polym. 2010, 11, 677–682.Google Scholar
  10. 10.
    Nicolai, M.; Nechwatal, A. The swelling effect of liquid ammonia in the dyeing of aramids. Color. Technol. 2010, 110, 228–230.Google Scholar
  11. 11.
    Peila, R.; Aimone, F.; Migliavacca, G.; Alongi, J.; Ferri, A.; Rovero, G. In Dyeing of aramids: a comparison between two industrial swelling agents, Autex2011–World Textile Conference, 2011.Google Scholar
  12. 12.
    Dong, Y.; Jang, J. The enhanced cationic dyeability of ultraviolet/ozone–treated meta–aramid fabrics. Color. Technol. 2011, 127, 173–178.CrossRefGoogle Scholar
  13. 13.
    Sheng, D.; Wang, Y.; Wang, X.; Lu, X.; Jiang, S.; Pan, H.; Cao, G.; Xu, W. Low–temperature dyeing of meta–aramid fabrics pretreated with 2–phenoxyethanol. Color. Technol. 2017, 133, 320–324.CrossRefGoogle Scholar
  14. 14.
    Kobayashi, S.; Wakida, T.; Niu, S.; Hazama, S.; Ito, T.; Sasaki, Y. The effect of sputter etching on the surface characteristics of dyed aramid fabrics. Color. Technol. 1995,111, 72–76.Google Scholar
  15. 15.
    Tansil, N. C.; Koh, L. D.; Han, M. Y. Functional silk: Colored and luminescent. Adv. Mater. 2012, 24, 1350–1350.CrossRefGoogle Scholar
  16. 16.
    Mallakpour, S.; Rafiemanzelat, F.; Faghihi, K. Synthesis and characterization of new self–colored thermally stable poly(amide–ether–urethane)s based on an azo dye and different diisocyanates. Dyes and Pigments 2007, 74, 713–722.CrossRefGoogle Scholar
  17. 17.
    Al–Muaikel, N. S. Synthesis and characterization of new unsaturated polyesters and copolyesters containing azo groups in the main chain. Eur. Polym. J. 2003, 39, 1025–1033.CrossRefGoogle Scholar
  18. 18.
    Patel, M. P.; Modi, B. J.; Patel, R. G.; Patel, V. S. Studies of novel water–soluble colored polyesters containing azo moiety. J. Appl. Polym. Sci. 2015, 68, 2041–2048.CrossRefGoogle Scholar
  19. 19.
    Bojinov, V.; Konstantinova, T. Synthesis of polymerizable 1,8–naphthalimide dyes containing hindered amine fragment. Dyes and Pigments 2002, 54, 239–245.CrossRefGoogle Scholar
  20. 20.
    Konstantinova, T.; Petrova, P. On the synthesis of some bifunctional reactive triazine dyes. Dyes and Pigments 2002, 52, 115–120.CrossRefGoogle Scholar
  21. 21.
    Hsiao, S. H.; Lin, K. H. Soluble aromatic polyamides bearing asymmetrical diaryl ether groups. Polymer 2004, 45, 7877–7885.CrossRefGoogle Scholar
  22. 22.
    Zhou, S.; Wang, X.; Zhang, W.; Zhang, M.; Zhang, X.; Zhao, N.; Liu, R.; Xu, J.; Shen, Z.; Fan, X. Facile preparation and characterization of soluble aramid. J. Appl. Polym. Sci. 2018, 135, 46341.Google Scholar
  23. 23.
    Liou, G. S.; Maruyama, M.; Kakimoto, M. A.; Imai, Y. Preparation and properties of aromatic polyamides from 2,2′–bis(paminophenoxy) biphenyl or 2,2′–bis(p–aminophenoxy)–1,1′–binaphthyl and aromatic dicarboxylic acids. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2499–2506.CrossRefGoogle Scholar
  24. 24.
    Imai, Y. Synthesis of novel organic–soluble high–temperature aromatic polymers. High Perform. Polym. 1995, 7, 337–345.CrossRefGoogle Scholar
  25. 25.
    Liang, Q.; Liu, P.; Liu, C.; Jian, X.; Hong, D.; Li, Y. Synthesis and properties of lyotropic liquid crystalline copolyamides containing phthalazinone moiety and ether linkages. Polymer 2005, 46, 6258–6265.CrossRefGoogle Scholar
  26. 26.
    Krevelen, D. W. V.; Hoftyzer, P. in Properties of polymers, their estimation and correlation with chemical structure, Elsevier Science, Netherlands, 1976, p.119Google Scholar
  27. 27.
    Takatsuka, R.; Uno, K.; Toda, F.; Iwakura, Y. Study on wholly aromatic polyamides containing methyl–substituted phenylene linkage. J. Polym. Sci., Part A: Polym. Chem. 1977, 15, 1905–1915.Google Scholar
  28. 28.
    Varadaiah, V. V.; Rao, V. S. R. Relation between molecular weight and root–mean–square end–to–end distance of randomly coiled macromolecules. J. Appl. Polym. Sci. 1959, 36, 558–560.CrossRefGoogle Scholar
  29. 29.
    Zeng, K.; Guo, Q.; Gao, S.; Wu, D.; Fan, H.; Yang, G. Studies on organosoluble polyimides based on a series of new asymmetric and symmetric dianhydrides: Structure/solubility and thermal property relationships. Macromol. Res. 2012, 20, 10–20.CrossRefGoogle Scholar
  30. 30.
    Razafimahefa, L.; Chlebicki, S.; Vroman, I.; Devaux, E. Effect of nanoclay on the dyeing ability of PA6 nanocomposite fibers. Dyes and Pigments 2005, 66, 55–60.CrossRefGoogle Scholar
  31. 31.
    Trigo–López, M.; Barrio–Manso, J. L.; Serna, F.; Garcia, F. C.; Garcia, J. M. Crosslinked aromatic polyamides: A further step in high–performance materials. Macromol. Chem. Phys. 2013, 214, 2223–2231.Google Scholar
  32. 32.
    Sheng, S. R.; Pei, X. L.; Huang, Z. Z.; Liu, X. L.; Song, C. S. Novel soluble fluorinated aromatic polyamides derived from 2–(4–trifluoromethylphenoxy)terephthaloyl chloride with various aromatic diamines. Eur. Polym. J. 2009, 45, 230–236.CrossRefGoogle Scholar
  33. 33.
    Yuabc, G.; Liu, J.; Wu, S.; Tan, H.; Panab, C. Novel thermally stable and organosoluble aromatic polyamides with main chain phenyl–1,3,5–triazine moieties. Polym. Degrad. Stabil. 2012, 97, 1807–1814.CrossRefGoogle Scholar
  34. 34.
    Kim, E. M.; Choi, J. H. Synthesis of cationized anthraquinone dyes and their dyeing properties for meta–aramid fiber. Fiber. Polym. 2013,14, 2054–2060.CrossRefGoogle Scholar
  35. 35.
    Fu, C.; Gu, L. Structures and properties of easily dyeable co-polyesters and their fibers respectively modified by three kinds of diols. J. Appl. Polym. Sci. 2013, 128, 3964–3973.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Na Li
    • 1
  • Xing-Ke Zhang
    • 1
  • Jun-Rong Yu
    • 1
    Email author
  • Yan Wang
    • 1
  • Jing Zhu
    • 1
  • Zu-Ming Hu
    • 1
  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina

Personalised recommendations