Advertisement

Formation of Poly(ε-caprolactone) Networks via Supramolecular Hydrogen Bonding Interactions

  • Sen Xu
  • Pengfei Chang
  • Bingjie Zhao
  • Muhammad Adeel
  • Sixun Zheng
Article

Abstract

In this contribution, we reported a novel approach to crosslink poly(ε-caprolactone) (PCL) via supramolecular hydrogen bonding interactions. First, a series of octa-armed poly(ε-caprolactone) stars with polyhedral oligomeric silsesquioxane (POSS) cores were synthesized via the ring-opening polymerizations. Thereafter, the arm ends of organic-inorganic star-shaped PCLs were reacted with 2-(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1H]-pyrimidinone to obtain 2-ureido-4[1H]-pyrimidone (UPy)-terminated PCL stars. Notably, the UPy-terminated PCL stars were physically crosslinked, which was evidenced by means of dynamic mechanical thermal analysis (DMTA) and rheological analysis. Owing to the formation of the physically-crosslinked networks, the organic-inorganic PCL stars displayed significant shape memory properties with about 100% of shape recovery, which was in marked contrast to the PCL stars without UPy termini.

Keywords

POSS PCL Physical crosslinking Shape memory properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51133003, 21274091, and 21774078).

Supplementary material

10118_2019_2199_MOESM1_ESM.avi (8.8 mb)
Supplementary material, approximately 8.75 MB.

References

  1. 1.
    Lendlein, A.; Kelch, S. Shape–memory polymers. Ange w. Chem. Int. Ed. 2002, 41, 2034–2057.CrossRefGoogle Scholar
  2. 2.
    Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763.CrossRefGoogle Scholar
  3. 3.
    Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49, 79–120.CrossRefGoogle Scholar
  4. 4.
    Xie, T. Tunable polymer multi–shape memory effect. Nature 2010, 464, 267.CrossRefGoogle Scholar
  5. 5.
    Liu, C.; Qin, H.; Mather, P. Review of progress in shape-memory polymers. J. Mater. Chem. 2007,17, 1543–1558.Google Scholar
  6. 6.
    Zotzmann, J.; Behl, M.; Hofmann, D.; Lendlein, A. Reversible triple–shape effect of polymer networks containing polypentadecalactone–and poly(e–caprolactone)–segments. Adv. Mater. 2010, T2, 3424–3429.Google Scholar
  7. 7.
    Mather, P. T.; Luo, X.; Rousseau, I. A. Shape memory polymer research. Annu. Rev. Mater. Res. 2009, 39, 445–471.CrossRefGoogle Scholar
  8. 8.
    Metzger, M. F.; Wilson, T. S.; Schumann, D.; Matthews, D. L.; Maitland, D. J. Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed. Microdevices 2002, 4, 89–96.CrossRefGoogle Scholar
  9. 9.
    Small IV, W.; Wilson, T. S.; Benett, W. J.; Loge, J. M.; Maitland, D. J. Laser–activated shape memory polymer intravascular thrombectomy device. Opt. Express 2005, 13, 8204–8213.CrossRefGoogle Scholar
  10. 10.
    Metcalfe, A.; Desfaits, A. C.; Salazkin, I.; Yahia, L. H.; Sokolowski, W. M.; Raymond, J. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 2003, 24, 491–497.CrossRefGoogle Scholar
  11. 11.
    Yu, X.; Zhou, S.; Zheng, X.; Xiao, Y.; Guo, T. Influence of in vitro degradation of a biodegradable nanocomposite on its shape memory effect. J. Phys. Chem. C 2009, 113, 17630–17635.CrossRefGoogle Scholar
  12. 12.
    Huang, W. M.; Song, C.; Fu, Y. Q.; Wang, C. C.; Zhao, Y.; Purnawali, H.; Lu, H.; Tang, C.; Ding, Z.; Zhang, J. L. Shaping tissue with shape memory materials. Adv. Drug. Deliver. Rev. 2013, 65, 515–535.CrossRefGoogle Scholar
  13. 13.
    Kim, B. K.; Lee, S. Y.; Xu, M. Polyurethanes having shape memory effects. Polymer 1996, 37, 5781–5793.CrossRefGoogle Scholar
  14. 14.
    Schuh, C.; Schuh, K.; Lechmann, M. C.; Garnier, L.; Kraft, A. Shape–memory properties of segmented polymers containing aramid hard segments and polycaprolactone soft segments. Polymers 2010, 2, 71–85.CrossRefGoogle Scholar
  15. 15.
    Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly(e–caprolactone) polyurethane and its shape–memory property. Biomacromolecules 2005, 6, 587–592.CrossRefGoogle Scholar
  16. 16.
    Yoshii, F.; Darwis, D.; Mitomo, H.; Makuuchi, K. Crosslinking of poly(e–caprolactone) by radiation technique and its biodegradability. Radiat. Phys. Chem. 2000, 57, 417–420.CrossRefGoogle Scholar
  17. 17.
    Wang, S.; Yaszemski, M. J.; Gruetzmacher, J. A.; Lu, L. Photocrosslinked poly(e–caprolactone fumarate) networks: Roles of crystallinity and crosslinking density in determining mechanical properties. Pofymer 2008, 49, 5692–5699.Google Scholar
  18. 18.
    Garle, A.; Kong, S.; Ojha, U.; Budhlall, B. M. Thermoresponsive semicrystalline poly(e–caprolactone) networks: Exploiting cross–linking with cinnamoyl moieties to design polymers with tunable shape memory. ACS Appl. Mater. Interfaces 2012, 4, 645–657.CrossRefGoogle Scholar
  19. 19.
    Deshmukh, P.; Yoon, H.; Cho, S.; Yoon, S. Y.; Zore, O. V.; Kim, T.; Chung, I.; Ahn, S. K.; Kasi, R. M. Impact of poly(ecaprolactone) architecture on the thermomechanical and shape memory properties. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3424–3433.CrossRefGoogle Scholar
  20. 20.
    Alvarado–Tenorio, B.; Romo–Uribe, A.; Mather, P. T. Nanoscale order and crystallization in POSS–PCL shape memory molecular networks. Macromolecules 2015, 48, 5770–5779.CrossRefGoogle Scholar
  21. 21.
    Baker, R. M.; Henderson, J. H.; Mather, P. T. Shape memory poly(e–caprolactone)–co–poly(ethylene glycol) foams with body temperature triggering and two–way actuation. J. Mater. Chem. B 2013, 1, 4916–4920.CrossRefGoogle Scholar
  22. 22.
    Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Shape memory polymer network with thermally distinct elasticity and plasticity. Sci. Adv. 2016, 2, e1501297.CrossRefGoogle Scholar
  23. 23.
    Ozturk, G.; Long, T. E. Michael addition for crosslinking of poly(caprolactone)s. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 5437–5447.CrossRefGoogle Scholar
  24. 24.
    Liu, Y.; Li, Y.; Yang, G.; Zheng, X.; Zhou, S. Multi–stimulusresponsive shape–memory polymer nanocomposite network cross–linked by cellulose nanocrystals. ACS Appl. Mater. Interfaces 2015, 7, 4118–4126.CrossRefGoogle Scholar
  25. 25.
    Mya, K. Y.; Gose, H. B.; Pretsch, T.; Bothe, M.; He, C. Starshaped POSS–polycaprolactone polyurethanes and their shape memory performance. J. Mater. Chem. 2011, 21, 4827–4836.CrossRefGoogle Scholar
  26. 26.
    Zhang, Y.; Wang, Q.; Wang, C.; Wang, T. High–strain shape memory polymer networks crosslinked by SiO2. J. Mater. Chem. 2011, 21, 9073–9078.CrossRefGoogle Scholar
  27. 27.
    Defize, T.; Riva, R.; Raquez, J. M.; Dubois, P.; Jérôme, C.; Alexandre, M. Thermoreversibly Crosslinked poly(e–caprolactone) as recyclable shape–memory polymer network. Macromol. Rapid. Comm. 2011, 32, 1264–1269.CrossRefGoogle Scholar
  28. 28.
    Defize, T.; Thomassin, J. M.; Alexandre, M.; Gilbert, B.; Riva, R.; Jérôme, C. Comprehensive study of the thermo–reversibility of Diels–Alder based PCL polymer networks. Polymer 2016, 84, 234–242.CrossRefGoogle Scholar
  29. 29.
    Lee, K. M.; Knight, P. T.; Chung, T.; Mather, P. T. Polycaprolactone–POSS chemical/physical double networks. Macromolecules 2008, 41, 4730–4738.CrossRefGoogle Scholar
  30. 30.
    Alvarado–Tenorio, B.; Romo–Uribe, A.; Mather, P. T. Microstructure and phase behavior of POSS/PCL shape memory nanocomposites. Macromolecules 2011, 44, 5682–5692.CrossRefGoogle Scholar
  31. 31.
    Lendlein, A.; Langer, R. Biodegradable, elastic shape–memory polymers for potential biomedical applications. Science 2002, 296,1673–1676.CrossRefGoogle Scholar
  32. 32.
    Langer, R.; Tirrell, D. A. Designing materials for biology and medicine. Nature 2004, 428, 487–492.CrossRefGoogle Scholar
  33. 33.
    Jing, X.; Mi, H. Y.; Huang, H. X.; Turng, L. S. Shape memory thermoplastic polyurethane (TPU)/poly(e–caprolactone) (PCL) blends as self–knotting sutures. J. Mech. Behav. Biomed. Mater. 2016, 64, 94–103.CrossRefGoogle Scholar
  34. 34.
    Huang, W. M.; Yang, B.; Fu, Y. Q. In polyurethane shape memory polymers. CRC Press: 2011.CrossRefGoogle Scholar
  35. 35.
    Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J. Am. Chem. Soc. 1998, 120, 6761–6769.CrossRefGoogle Scholar
  36. 36.
    Söntjens, S. H.; Sijbesma, R. P.; van Genderen, M. H.; Meijer, E. W. Stability and lifetime of quadruply hydrogen bonded 2–ureido–4[1H]–pyrimidinone dimers. J. Am. Chem. Soc. 2000, 122, 7487–7493.CrossRefGoogle Scholar
  37. 37.
    Kushner, A. M.; Gabuchian, V.; Johnson, E. G.; Guan, Z. Biomimetic design of reversibly unfolding cross–linker to enhance mechanical properties of 3D network polymers. J. Am. Chem. Soc. 2007,129, 14110–14111.Google Scholar
  38. 38.
    Zhu, Y.; Hu, J.; Liu, Y. Shape memory effect of thermoplastic segmented polyurethanes with self–complementary quadruple hydrogen bonding in soft segments. Eur. Phys. J. E 2009, 28, 3–10.CrossRefGoogle Scholar
  39. 39.
    Wang, L.; Zhang, C.; Cong, H.; Li, L.; Zheng, S.; Li, X.; Wang, J. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star–like topologies. J. Phys. Chem. B 2013,117, 8256–8268.Google Scholar
  40. 40.
    Folmer, B. J.; Sijbesma, R.; Versteegen, R.; Van der Rijt, J.; Meijer, E. Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen–bonding synthon. Adv. Mater. 2000, 12, 874–878.CrossRefGoogle Scholar
  41. 41.
    Dankers, P. Y.; Adams, P.; Löwik, D. W.; van Meijer, E. Convenient solid–phase synthesis of ureidopyrimidinone modified peptides. Eur. J. Org. Chem. 2007, 22, 3622–3632.CrossRefGoogle Scholar
  42. 42.
    Winter, H. H.; Chambon, F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 1986, 30, 367–382.CrossRefGoogle Scholar
  43. 43.
    Chambon, F.; Winter, H. H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol. 1987, 31, 683–97.CrossRefGoogle Scholar
  44. 44.
    Winter, H. H.; Mours, M. Rheology of polymers near their liquid–solid transitions. Adv. Polym. Sci. 1997, 134, 165–234.CrossRefGoogle Scholar
  45. 45.
    Soenen, H.; Berghmans, H.; Winter, H. H.; Overbergh, N. Ordering and structure formation in triblock copolymer solutions. Part II. Small angle X–ray scattering and calorimetric observations. Polymer 1997, 38, 5653–5660.Google Scholar
  46. 46.
    Lin, Y. G.; Mallin, D. T.; Chien, J. C. W.; Winter, H. H. Dynamical mechanical measurement of crystallization–induced gelation in thermoplastic elastomeric poly(propylene). Macromolecules 1991, 24, 850–854.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sen Xu
    • 1
  • Pengfei Chang
    • 1
  • Bingjie Zhao
    • 1
  • Muhammad Adeel
    • 1
  • Sixun Zheng
    • 1
  1. 1.Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations