Advertisement

1,3-Butadiene Polymerizations Catalyzed by Cobalt and Iron Dichloride Complexes Bearing Pyrazolylimine Ligands

  • Liang Fang
  • Wen-Peng Zhao
  • Chao Han
  • Chun-Yu ZhangEmail author
  • Heng LiuEmail author
  • Yan-Ming Hu
  • Xue-Quan Zhang
Article
  • 13 Downloads

Abstract

A series of pyrazolylimine ligated Co(II) and Fe(II) complexes with general formula of (PhC=N(C6H3(R1)2-2,6)(C3HN2 (R2)2-3,5)MtCl2 (R1 = Me, R2 = H, Mt = Co (1a), Fe (2a); R1 = Me, R2 = Me, Mt = Co (1b), Fe (2b); R1 = iPr, R2 = H, Mt = Co (1c), Fe (2c); R1 = iPr, R2 = Me, Mt = Co (1d), Fe (2d); R1 = iPr, R2 = Ph, Mt = Co (1e), Fe (2e)) were synthesized and thoroughly characterized. Determined by single crystal X-ray diffraction, complexes 1b and 2b revealed dimeric structures, in which distorted trigonal bipyramid geometries were adopted for each metal centers. In the presence of ethylaluminum sesquichloride (EASC), all the cobalt complexes displayed high activities in 1,3-butadiene polymerization, affording polybutadienes with predominant cis-1,4 contents (up to 97.0%). Influences of ligand structure and polymerization parameters on catalytic performance were investigated systematically. For pyrazolylimine iron(II) dichloride complexes, the catalytic activities and microstructures of the resultant polybutadienes were highly dependent on ligand structures and polymerization conditions. For complex 2a, changing cocatalyst from trialkyl aluminums to methyl aluminoxane (MAO) led to an shift of selectivity from high cis-1,4- to trans-1,4-/1,2- manner. Being activated by MAO, complexes 2a and 2b gave trans-1,4-/1,2- binary polybutadienes, while complexes 2c, 2d, and 2e afforded cis-1,4- enriched polymers.

Keywords

Late transition metal Cobalt(II) complexes Iron(II)complexes Stereoselective polymerization Polybutadiene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2015CB654700 (2015CB654702)) and the National Natural Science Foundation of China (No. 21801236).

References

  1. 1.
    Friebe, L.; Nuyken, O.; Obrecht, W. Neodymium-based Ziegler/Natta catalysts and their application in diene polymerization. Neodymium Based Ziegler Catalysts Fundamental Chemistry 2006, 1–154.Google Scholar
  2. 2.
    Zhang, Z.; Cui, D.; Wang, B.; Liu, B.; Yang, Y. Polymerization of 1,3-conjugated dienes with rare-earth metal precursors. Struct. Bond. 2010, 137, 49–108.CrossRefGoogle Scholar
  3. 3.
    Ricci, G.; Sommazzi, A.; Masi, F.; Ricci, M.; Boglia, A.; Leone, G. Well-defined transition metal complexes with phosphorus and nitrogen ligands for 1,3-dienes polymerization. Coord. Chem. Rev. 2010, 254, 661–676.CrossRefGoogle Scholar
  4. 4.
    Porri, L.; Giarrusso, A.; Ricci, G. Recent views on the mechanism of diolefin polymerization with transition metal initiator systems. Prog. Polym. Sci. 1991, 16, 405–441.CrossRefGoogle Scholar
  5. 5.
    Thiele, S. K. H.; Wilson, D. R. Alternate transition metal complex based diene polymerization. J. Macromol Sci. Polym. Rev. 2003, C43, 581–628.Google Scholar
  6. 6.
    Ricci, G.; Panagia, A.; Poiri, L. Polymerization of 1,3-dienes with catalysts based on mono- and bis-cyclopentadienyl derivatives of vanadium. Polymer 1996, 37, 363–365.CrossRefGoogle Scholar
  7. 7.
    van der Linden, A.; Schaverien, C. J.; Meijboom, N.; Ganter, C.; Orpen, A. G. Polymerization of α-olefins and butadiene and catalytic cyclotrimerization of 1-alkynes by a new class of group IV catalysts. Control of molecular weight and polymer micro structure via ligand tuning in sterically hindered chelating phenoxide titanium and zirconium species. J. Am. Chem. Soc. 1995, 117, 3008–3021.Google Scholar
  8. 8.
    Jang, Y.; Choi, D. S.; Han, S. Effects of tris(pentafluoro phenyl)borane on the activation of a metal alky 1-free Ni-based catalyst in the polymerization of 1,3-butadiene. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 1164–1173.CrossRefGoogle Scholar
  9. 9.
    Sivaram, S.; Upadhyay, V. K. Synthesis of high cis-polymerization usging cobalt(II) 2-ethylhexoate modified triethylaluminum catalyst. J. Macromol Sci. Pur. 1992, 29, 13–19.CrossRefGoogle Scholar
  10. 10.
    Ashitaka, H.; Ishikawa, H.; Ueno, H.; Nagasaka, A. Syndiotactic 1,2-polybutadiene with Co-CS2 catalyst system. 1. Preparation, properties, and application of highly crystalline syndiotactic 1,2-polybutadiene. J. Polym. Sci., Part A: Polym. Chem. 1983, 21, 1853–1860.Google Scholar
  11. 11.
    Wang, F.; Liu, H.; Zheng, W.; Guo, J.; Zhang, C.; Zhao, L.; Zhang, H.; Hu, Y.; Bai, С.; Zhang, X. Fully-reversible and semi-reversible coordinative chain transfer polymerizations of 1,3-butadiene with neodymium-based catalytic systems. Polymerien, 2013, 54, 6716–6724.Google Scholar
  12. 12.
    Nishii, K.; Kang, X.; Nishiura, M.; Luo, Y.; Hou, Z. Regio-and stereo specific living polymerization and copolymerization of (Ey 1,3-pentadiene with 1,3-butadiene by half-sandwich scandium catalysts. Dalton Trans. 2013, 42, 9030–9032.CrossRefGoogle Scholar
  13. 13.
    Hu, Y.; Dong, W.; Masuda, T. Novel methylaluminoxane-activated neodymium isopropoxide catalysts for 1,3-butadiene polymerization and 1,3-butadiene/isoprene copolymerization. Macromol Chem. Phys. 2013, 214, 2172–2180.CrossRefGoogle Scholar
  14. 14.
    Gibson, V. C.; Redshaw, C.; Solan, G. A. Bis(imino)pyridines: Surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev. 2007, 107, 1745–1776.CrossRefGoogle Scholar
  15. 15.
    Wang, Z.; Solan, G. A.; Mahmood, Q.; Liu, Q.; Ma, Y.; Hao, X.; Sun, W. H. Bis(imino)pyridines incorporating doubly fused eight-membered rings as confomiationally flexible supports for cobalt ethylene polymerization catalysts. Organometallics 2018, 37, 380–389.CrossRefGoogle Scholar
  16. 16.
    Mu, H.; Pan, L.; Song, D.; Li, Y. Neutral nickel catalysts for olefin homo- and copolymerization: Relationships between catalyst structures and catalytic properties. Chem. Rev. 2015, 115, 12091–12137.CrossRefGoogle Scholar
  17. 17.
    Li, M.; Shu, X.; Cai, Z.; Eisen, M. S. Synthesis, structures, and norbomene polymerization behavior of neutral nickel(II) and palladium(II) complexes bearing aryloxide imidazolidin-2-imine ligands. Organometallics 2018, 37, 1172–1180.CrossRefGoogle Scholar
  18. 18.
    Ricci, G.; Morganti, D.; Sommazzi, A.; Santi, R.; Masi, F. Polymerization of 1,3-dienes with iron complexes based catalysts: Influence of the ligand on catalyst activity and stereo specificity. J. Mol Catal A Chem. 2003, 204–205, 287–293.CrossRefGoogle Scholar
  19. 19.
    Ricci, G.; Forni, A.; Boglia, A.; Motta, T. Synthesis, structure, and butadiene polymerization behavior of alkylphosphine cobalt( II) complexes. J. Mol. Catal. A Chem. 2005, 226, 235–241.CrossRefGoogle Scholar
  20. 20.
    Nath, D. C. D.; Shiono, T.; Ikeda, T. Cis-specific living polymerization of 1,3-butadiene with CoCl2 and methylalmninoxane. Macromol Chem. Phys. 2002, 203, 756–760.CrossRefGoogle Scholar
  21. 21.
    Endo, K.; Hatakeyama, N. Stereospecific and molecular weight-controlled polymerization of 1,3-butadiene with Co(acac)3-MAO catalyst. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2793–2798.CrossRefGoogle Scholar
  22. 22.
    Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Synergetic effect of monomer functional group coordination in catalytic insertion polymerization. J. Am. Chem. Soc. 2017, 139, 6823–6826.CrossRefGoogle Scholar
  23. 23.
    Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Stereoselective copolymerization of butadiene and functionalized 1,3-dienes. ACS Macro Lett. 2016, 5, 777–780.CrossRefGoogle Scholar
  24. 24.
    Gong, D.; Jia, X.; Wang, F.; Wang, F.; Zhang, C.; Zhang, X.; Jiang, L.; Dong, W. Highly ira-1,4 selective polymerization of 1,3-butadiene initiated by iron(III) bis(imino)pyridy 1 complexes. Inorg. Chim. Acta 2011, 373, 47–53.CrossRefGoogle Scholar
  25. 25.
    Gong, D.; Jia, X.; Wang, В.; Zhang, X.; Huang, K. W. Trans-1,4 selective polymerization of 1,3-butadiene with symmetry pincer chromium complexes activated by MMAO. J. Organomet Chem. 2014, 766, 79–85.CrossRefGoogle Scholar
  26. 26.
    Gong, D.; Wang, B.; Cai, H.; Zhang, X.; Jiang, L. Synthesis, characterization and butadiene polymerization studies of cobalt(II) complexes bearing bisiminopyridine ligand. J. Organomet. Chem. 2011, 696, 1584–1590.CrossRefGoogle Scholar
  27. 27.
    Gong, D.; Wang, B.; Bai, C.; Bi, J.; Wang, F.; Dong, W.; Zhang, X.; Jiang, L. Metal dependent control of cis-/trans-l,4 regioselectivity in 1,3-butadiene polymerization catalyzed by transition metal complexes supported by 2,6-bis[l-(iminophenyl) ethyl]pyridine. Polymer 2009, 50, 6259–6264.CrossRefGoogle Scholar
  28. 28.
    Jia, X.; Liu, H.; Hu, Y.; Dai, Q.; Bi, J.; Bai, C.; Zhang, X. Highly active and cis-1,4 selective polymerization of 1,3-butadiene catalyzed by cobalt(II) complexes bearing alphadiimine ligands. Chinese J. Catal. 2013, 34, 1560–1569.CrossRefGoogle Scholar
  29. 29.
    Alnajrani, M. N.; Mair, F. S. Synthesis and characterization of β-triketimine cobalt complexes and their behaviour in the polymerization of 1,3-butadiene. Dalton Trans. 2014, 43, 15727–15736.CrossRefGoogle Scholar
  30. 30.
    Alnajrani, M. N.; Mair, F. S. The behaviour of β-triketimine cobalt complexes in the polymerization of isoprene. RSC Adv. 2015, 5, 46372–46385.CrossRefGoogle Scholar
  31. 31.
    Gong, D.; Wang, B.; Jia, X.; Zhang, X. The enhanced catalytic performance of cobalt catalysts towards butadiene polymerization by introducing a labile donor in a salen ligand. Dalton Trans. 2014, 43, 4169–4178.Google Scholar
  32. 32.
    Chandran, D.; Kwak, C. H.; Ha, C. S.; Kim, I. Polymerization of 1,3-butadiene by bis(salicylaldiminate)cobalt(II) catalysts combined with organoaluminium cocatalysts. Catal. Today 2008, 131, 505–512.CrossRefGoogle Scholar
  33. 33.
    Guo, J.; Zhang, C.; Bi, J.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Cobalt complexes bearing pyridine-imino ligands with bulky aryl substituents: Synthesis, characterization, and 1,3-butadiene polymerization behaviors. J. Organomet. Chem. 2015, 798, 414–421.CrossRefGoogle Scholar
  34. 34.
    Ai, P.; Chen, L.; Guo, Y.; Jie, S.; Li, B. G. Polymerization of 1,3-butadiene catalyzed by cobalt(II) and nickel(II) complexes bearing imino- or amino-pyridyl alcohol ligands in combination with ethylaluminum sesquichloride. J. Organomet. Chem. 2012, 705, 51–58.Google Scholar
  35. 35.
    Wang, B.; Gong, D.; Bi, J.; Dai, Q.; Zhang, C.; Hu, Y.; Zhang, X.; Jiang, L. Synthesis, characterization and 1,3-butadiene polymerization behaviors of cobalt complexes bearing 2-pyrazoly 1-substituted 1,10-phenanthroline ligands. Appl Organomet. Chem. 2013, 27, 245–252.CrossRefGoogle Scholar
  36. 36.
    Guo, J.; Liu, H.; Bi, J.; Zhang, C.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Pyridine-oxazoline and quinoline-oxazoline ligated cobalt complexes: Synthesis, characterization, and 1,3-butadiene polymerization behaviors. Inorg. Chim. Acta 2015, 435, 305–312.CrossRefGoogle Scholar
  37. 37.
    Appukuttan, V.; Zhang, L.; Ha, J. Y.; Chandran, D.; Bahuleyan, B. K.; Ha, C. S.; Kim, I. Stereospecific polymerizations of 1,3-butadiene catalyzed by Co(II) complexes ligated by 2,6-bis(benzimidazolyl)pyridines. J. Mol. Catal A Chem. 2010, 325, 84–90.CrossRefGoogle Scholar
  38. 38.
    Wang, G.; Jiang, X.; Zhao, W.; Sun, W.; Yao, W.; He, A. Catalytic behavior of Co(II) complexes with 2-(benzimidazolyl)-6-( 1-(arylimino)ethyl)pyridine ligands on isoprene stereospecific polymerization. J. Appl Polym. Sci. 2014, 131, 39703–39708.CrossRefGoogle Scholar
  39. 39.
    Appukuttan, V.; Zhang, L.; Ha, C. S.; Kim, I. Highly active and stereospecific polymerizations of 1,3-butadiene by using bis(benzimidazolyl)amine ligands derived Co(II) complexes in combination with ethylaluminum sesquichloride. Polymer 2009, 50, 1150–1158.Google Scholar
  40. 40.
    Liu, H.; Wang, F.; Jia, X.; Liu, L.; Bi, J.; Zhang, C.; Zhao, L.; Bai, С.; Hu, Y.; Zhang, X. Synthesis, characterization, and 1,3-butadiene polymerization studies of Co(II), Ni(II), and Fe(II) complexes bearing 2-(N-arylcarboximidoylchloride)quinoline ligand. J. Mol Catal A Chem. 2014,391,25–35.CrossRefGoogle Scholar
  41. 41.
    Liu, H.; Jia, X.; Wang, F.; Dai, Q.; Wang, B.; Bi, J.; Zhang, C.; Zhao, L.; Bai, C.; Hu, Y.; Zhang, X. Synthesis of bis(N-arylcarboximidoylchloride) pyridine cobalt(II) complexes and their catalytic behavior for 1,3-butadiene polymerization. Dalton Trans. 2013, 42, 13723–13732.CrossRefGoogle Scholar
  42. 42.
    Liu, H.; Yang, S. Z.; Wang, F.; Bai, C. X.; Hu, Y. M.; Zhang, X. Q. Polymerization of 1,3-butadiene catalyzed by cobalt(II) and nickel(II) complexes bearing pyridine-2-imidate ligands. Chinese J. Polym. Sci. 2016, 34, 1060–1069.CrossRefGoogle Scholar
  43. 43.
    Liu, H.; Zhuang, R.; Dong, B.; Wang, F.; Hu, Y. M.; Zhang, X. Q. Mono-and binuclear cobalt(II) complexes supported by quinoline-2-imidate ligands: Synthesis, characterization, and 1,3-butadiene polymerization. Chinese J. Polym. Sci. 2018, 36, 943–952.CrossRefGoogle Scholar
  44. 44.
    Liu, H.; Wang, F.; Han, C.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Cobalt and nickel complexes supported by 2,6-bis(imidate)pyridyl ligands: Synthesis, characterization, and 1,3-butadiene polymerization studies. Inorg. Chim. Acta 2015, 434, 135–142.CrossRefGoogle Scholar
  45. 45.
    Wang, Y.; Lin, S.; Zhu, F.; Gao, H.; Wu, Q. Dinuclear nickel(II) complexes bearing two pyrazolylimine ligands: Synthesis characterization, and catalytic properties for vinyl-type polymerization of norbomene. Eur. Polym. J. 2008, 44, 2308–2317.CrossRefGoogle Scholar
  46. 46.
    Han, C. Pyrazolylimine Ni(II) complexes: Synthesis, characterization, and catalytic behaviors for 1,3-butadiene polymerization. Chinese J. Appl Chem. 2015, 32, 909–915.Google Scholar
  47. 47.
    Jie, S.; Ai, P.; Li, B. Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by dinuclear cobalt(II) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes. Dalton Trans. 2011, 40, 10975–10982.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Materials Science and EngineeringShenyang University of Chemical TechnologyShenyangChina

Personalised recommendations