Skip to main content

Advertisement

Log in

Binuclear and Hexanuclear Ti(IV) Complexes Supported by [OOOO]4–-type Ligand for Preparing Disentangled UHMWPE

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Binuclear and hexanuclear titanium complexes stabilized by tetradentate [OOOO]4–-type ligand were active in ethylene polymerization in the presence of Et2AlCl/Bu2Mg binary co-catalyst, giving high molecular weight polyethylene. The binuclear complex showed significantly higher catalytic activity and thermal stability in comparison to mononuclear analogue. Ultra high molecular weight polyethylene (UHMWPE) samples were processed by a solid-state uniaxial deformation into high-strength (up to 2.5 GPa) and highmodulus (over 100 GPa) oriented film tapes, which indirectly indicates a low degree of entanglements between the macromolecular chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurtz, S. M. in The UHMWPE Handbook, Ultra high molecular weight poiyethylene in total joint replacement. Elsevier, Academic Press, New York, 2004, p. 397

    Google Scholar 

  2. Smith, P.; Chanzy, H. D.; Rotzinger, B. P. Drawing of virgin ultrahigh molecular weight polyethylene: An alternative route to high strength fibres. Poly. Commun. 1985, 26, 258–261.

    CAS  Google Scholar 

  3. Smith, P.; Chanzy, H. D.; Rotzinger, B. P. Drawing of virgin ultrahigh molecular weight polyethylene: An alternative route to high strength/high modulus materials. Mater. Sci. 1987, 22, 523–531.

    Article  CAS  Google Scholar 

  4. Wang, L. H.; Porter, R. S. Rolling and roll–drawing of ultrahigh molecular weight polyethylene reactor powders. J. Appl. Poiym. Sci. 1991, 43, 1559–1564.

    Article  CAS  Google Scholar 

  5. Rastogi, S.; Yao, Y.; Ronca, S.; Bos, J.; van der Eem, J. Unprecedented high–modulus high–strength tapes and films of ultrahigh molecular weight polyethylene via solvent–free route. Macromolecules 2011, 44, 5558–5568.

    Article  CAS  Google Scholar 

  6. Yao, Y.; Jiang, S.; Rastogi, S. 13C solid state NMR characterization of structure and orientation development in the narrow and broad molar mass disentangled UHMWPE. Macromoiec Macromoiecules 2014, 47, 1371–1382.

    Article  CAS  Google Scholar 

  7. Ozerin, A. N.; Ivanchev, S. S.; Chvalun, S. N.; Aulov, V. A.; Ivancheva, N. I.; Bakeev, N. F. Properties of oriented film tapes prepared via solid–state processing of a nascent ultrahigh–molecular–weight polyethylene reactor powder synthesized with a postmetallocene catalyst. Poi/ymer Science, Ser. A 2012, 54, 950–954.

    Article  CAS  Google Scholar 

  8. Solov’ev, M. V.; Gagieva, S. Ch.; Tuskaev, V. A.; Bravaya, N. M.; Gadalova, O. E.; Khrustalev, V. N.; Borissova, A. O.; Novel titanium(IV) complexes with 2,4-di-tert-butyl-6-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenol in ethene polymerization. Russ. Chem. Bull. 2011, 60, 2227–2235.

    Article  CAS  Google Scholar 

  9. Rishina, L. A.; Lalayan, S. S.; Gagieva, S. Ch.; Tuskaev, V. A.; Perepelitsyna, E. O.; Kissin, Y. V. Polymers of propylene and higher 1–alkenes produced with postmetallocene complexes containing a saligenin–type ligand. Polymer 2013, 54, 6526–6235.

    Article  CAS  Google Scholar 

  10. Tuskaev, V. A.; Gagieva, S. Ch.; Solov’ev, M. V.; Kurmaev, D. A.; Kolosov, N. A.; Fedyanin, I. V.; Bulychev, B. M. Coordination compounds of titanium(IV) and 2–hydroxymethylphenol derivatives: Their synthesis, structure and catalytic activity in ethylene and 1–hexene polymerization. J. Organoimet. Chem. 2015, 797, 159–164.

    Article  CAS  Google Scholar 

  11. Rishina, L. A.; Lalayan, S. S.; Gagieva, S. Ch.; Tuskaev, V. A.; Shchegolikhin, A. N.; Shashkin, D. P.; Kissin, Y. V. Titanium complex containing a saligenin ligand–new universal postmetallocene polymerization catalyst: Copolymerization of ethylene with higher a–olefins. J. Res. Updates Poiym. Sci. 2015, 3, 216–226.

    Article  CAS  Google Scholar 

  12. Gagieva, S. Ch.; Tuskaev, V. A.; Fedyanin, I. V.; Zvukova, T. M.; Bulychev, B. M. Novel bi–and hexanuclear titanium(IV) complexes: Synthesis, structure and catalytic activities in oligoand polymerization of 1–hexene. J. Organoimet. Chem. 2016, 802, 9–14.

    Article  CAS  Google Scholar 

  13. Gagieva, S. Ch.; Tuskaev, V. A.; Fedyanin, I. V.; Sizov, A. I.; Mikhaylik, E. S.; Golubev, E. K.; Bulychev, B. M. Chlorideand alkoxo–titanium(IV) complexes stabilized by 2–hydroxymethylphenol derivative as catalysts for the formation of ultrahigh molecular weight polyethylene nascent reactor powders. Polyhedron 2017, 122, 179–183.

    Google Scholar 

  14. Tuskaev, V. A.; Gagieva, S. Ch.; Kurmaev, D. A.; Zubkevich, S. V.; Kolosov, N. A.; Golubev, E. K.; Nikiforova, G. G.; Khrustalev, V. N.; Bulychev, B. M. Novel titanium(IV) complexes stabilized by 2–hydroxybenzyl alcohol derivatives as catalysts for UHMWPE production. J. Organoimet. Chem. 2018, 867, 266–272.

    Article  CAS  Google Scholar 

  15. Delferro, M.; Marks, T. J. Multinuclear olefin polymerization catalysts. Chem. Rev. 2011, 111, 2450–2485.

    Article  CAS  PubMed  Google Scholar 

  16. Ainooson, M.; Meyer, F., in Comprehensive Inorganic Chemistry II (Second Edition), Volume 8: Coordination and Organometallic Chemistry, 2013, 433–458.

    Book  Google Scholar 

  17. Chen, Z.; Yao, E.; Wang, J.; Gong, X.; Ma, Y. Ethylene (co)polymerization by binuclear nickel phenoxyiminato catalysts with cofacial orientation. Macromolecules 2016, 49, 8848–8854.

    Article  CAS  Google Scholar 

  18. Chen, Z.; Zhao, X.; Gong, X.; Xu, D.; Ma, Y. Macrocyclic trinuclear nickel phenoxyimine catalysts for high–temperature polymerization of ethylene and isospecific polymerization of propylene. Macromolecules 2017, 50, 6561–6568.

    Article  CAS  Google Scholar 

  19. Rong, Ch.; Wang, F.; Li, W.; Chen, M. Ethylene polymerization by dinuclear xanthene–bridged imino–and aminopyridyl nickel complexes. Organoimetallics 2017, 36, 4458–4464.

    Google Scholar 

  20. Kissin, Y. V.; Nowlin, T. E.; Mink, R. I.; Brandolini, A. J. A new cocatalyst for metallocene complexes in olefin polymerization. Macromolecules 2000, 33, 4599–4601.

    Article  CAS  Google Scholar 

  21. Kissin, Y. V.; Mink, R. I.; Brandolini, A. J., Nowlin, T. E. AlR2Cl/MgR2 combinations as universal cocatalysts for Zieghttps ler–Natta, metallocene, and post–metallocene catalysts. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3271–3285.

    Article  CAS  Google Scholar 

  22. Joo, Y. K.; Zhou, H.; Lee, S. G.; Lee, H. K.; Song, J. K. Solidstate compaction and drawing of nascent reactor powders of ultra–high–molecular–weight polyethylene. J. Appl. Polym. Sci. 2005, 98, 718–730.

    Article  CAS  Google Scholar 

  23. Ivancheva, N. I.; Sanieva, D. V.; Fedorov, S. P.; Oleinik, I. V.; Oleinik, I. I.; Tolstikov, G. A.; Ivancheva, S. S. Self–immobilized catalysts for ethylene polymerization based on various phenoxyimine titanium halide complexes. Russ. Chem. Bull. 2012, 61, 836–842.

    Article  CAS  Google Scholar 

  24. Talebi, S.; Duchateau, R.; Rastogi, S.; Kaschta, J.; Peters, G. W. M.; Lemstra, P. J. Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst. Macromolecules 2010, 43, 2780–2788.

    Google Scholar 

  25. Atiqullah, M.; Hammawa, H.; Hamid, H. Modeling the solubility of ethylene and propylene in a typical polymerization diluent: Some selected situations. Eur. Polym. J. 1998, 34, 1511–1520.

    Article  CAS  Google Scholar 

  26. Wu, J.; Pan, Q.; Rempel, G. L. Solubility of ethylene in toluene and toluene/styrene–butadiene rubber solutions. J. Appl. Polym. Sci. 2005, 96, 645–649.

    Article  CAS  Google Scholar 

  27. Eskelinen, M. J.; Seppälä, V. Effect of polymerization temperature on the polymerization of ethylene with dicyclopentadienylzirconiumdichloride/ methylalumoxane catalyst. Eur. Polym. J. 1996, 32, 331–335.

    Article  CAS  Google Scholar 

  28. Ye, J. D.; Fang, Z. Q.; Wang, W. Strong influences of polymerization temperature on ethylene/1–hexene copolymerization catalyzed by (2–PhInd)2ZrCl2/methyl aluminoxane. J. Zhejiang Univ. Sci. 2005, 6B, 1009–1014.

    Google Scholar 

  29. van Kimmenade, E. M. E.; Loos, J.; Niemantsverdriet, J. W.; Thune, P. C. The effect of temperature on ethylene polymerization over flat Phillips model catalysts. J. Catal. 2006, 240, 39–46.

    Article  CAS  Google Scholar 

  30. Kissin, Y. V. in Alkene polymerization reactions with transition metal catalysts. Elsevier: Amsterdam, 2008, p. 495.

    Google Scholar 

  31. Kaminsky, W. Olefin polymerization catalyzed by metallocenes. Adv. Catal. 2002, 46, 90–152.

    Google Scholar 

  32. Helldörfer, M.; Backhaus, J.; Alt, H. G. The influence of the ligand structure on the properties of (a–diimine)nickel catalysts in the polymerization and oligomerization of ethylene. Inorg. Chim. Acta 2003, 351, 34–42.

    Article  CAS  Google Scholar 

  33. Costa, M. A. S.; Coutinho, F. M. B.; Santa Maria, L. C. The role of prepolymerization on Ziegler–Natta nonsupported catalyst for propylene polymerization. Polymer Reaction Engineering 1994, 2, 241–250.

    Article  CAS  Google Scholar 

  34. Bochmann M. The chemistry of catalyst activation: The case of group 4 polymerization catalysts. Organometallics 2010, 29, 4711–4740.

    CAS  Google Scholar 

  35. Makio, H.; Terao, H.; Iwashita, A.; Fujita, T. FI catalysts for olefin polymerization—A comprehensive treatment. Chem. Rev. 2011, 111, 2363–2449.

    Article  CAS  PubMed  Google Scholar 

  36. Talebi, S.; Duchateau, R.; Rastogi, S.; Kaschta, J.; Peters, G. W. M.; Lemstra P. J. Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst. Macromolecules 2010, 43, 2780–2788.

    CAS  Google Scholar 

  37. Romano, D.; Andablo–Reyes, E. A.; Ronca, S.; Rastogi, S. Effect of a cocatalyst modifier in the synthesis of ultrahigh molecular weight polyethylene having reduced number of entanglements. J. Polym. Sci., Part A: Polymer Chem. 2013, 51, 1630–1635.

    Article  CAS  Google Scholar 

  38. Gagieva, S. Ch.; Tuskaev, V. A.; Fedyanin, I. V.; Buzin, M. I.; Vasil’ev, V. G.; Nikiforova, G. G.; Afanas’ev, E. S.; Zubkevich, S. V.; Kurmaev, D. A.; Kolosov, N. A.; Mikhaylik, E. S.; Golubev, E. K.; Sizov, A. I.; Bulychev, B. M. Novel titanium(IV) diolate complexes: Synthesis, structure and catalytic activities in ultra–high molecular weight polyethylene production. J. Organomet. Chem. 2017, 828, 89–95.

    Article  CAS  Google Scholar 

  39. Tuskaev, V. A.; Gagieva, S. C.; Kurmaev D. A.; Khrustalev V. N.; Dorovatovskii P. V.; Mikhaylik E. S.; Golubev E. K.; Buzin M. I.; Zubkevich S. V.; Kolosov N. A.; Nikiforova G. G.; Vasil’ev V. G.; Bulychev B. M. Novel titanium(IV) complexes with 1,2–diolate ligands: Synthesis, structure and catalytic activities in ultra–high molecular weight polyethylene production. J. Organomet. Chem in press, Doi: 10.1016/j.jorganchem.2018.09.014.

Download references

Acknowledgments

This work was financially supported by the Russian Science Foundation (No. 16-13-10502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav A. Tuskaev.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuskaev, V.A., Gagieva, S.C., Kurmaev, D.A. et al. Binuclear and Hexanuclear Ti(IV) Complexes Supported by [OOOO]4–-type Ligand for Preparing Disentangled UHMWPE. Chin J Polym Sci 37, 471–477 (2019). https://doi.org/10.1007/s10118-019-2197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2197-0

Keywords

Navigation