Advertisement

Neodymium Organic Sulfonate Complexes: Tunable Electronegativity/Steric Hindrance and Application in Controlled Cis-1,4-polymerization of Butadiene

  • Jian-Yun He
  • Long Cui
  • Yan-Long Qi
  • Quan-Quan DaiEmail author
  • Chen-Xi BaiEmail author
Article
  • 5 Downloads

Abstract

Rare earth catalysts possessing characteristics of cation-anion ion pair show advantages of adjusting electronegativity and steric hindrance of metal active sites, which can control the catalytic performance and stereoselectivity better than those of traditional metallocene and Ziegler-Natta catalysts in diene polymerization. In this work, a series of neodymium organic sulfonate complexes, Nd(CF3SO3)3·xH2yL (x, y: the coordination number; L refers to an organic electron donating ligand, such as acetylacetone (acac), iso-octyl alcohol (IAOH), tributyl phosphate (TBP), etc.), have been synthesized to form the cationic active species in the presence of alkylaluminum such as Al(i-Bu)3, AlEt3, and Al(i-Bu)2H, which display high activities and distinguishing cis-1,4 selectivities (up to 99.9%) for the polymerization of butadiene. The microstructures, yield, molecular weight, and molecular weight distribution of the resulting polymer are well controlled by adjusting electronegativity/steric hindrance of the complexes. In addition, the kinetics, active species, and the possible process of polymerization are also discussed in this article.

Keywords

Neodymium catalysts Organic sulfonate complexes Tunable electronegativity and steric hindrance Cis-1,4-polymerization Butadiene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We acknowledge the National Natural Science Foundation of China (Nos. 51473156 and 51873203), Key Projects of Jilin Province Science and Technology Development Plan (Nos. 2018020108GX and 20160204028GX).

Supplementary material

10118_2019_2196_MOESM1_ESM.pdf (203 kb)
Neodymium Organic Sulfonate Complexes: Tunable Electronegativity/Steric Hindrance and Application in Controlled Cis-1,4-polymerization of Butadiene

References

  1. 1.
    McKnight, A. L.; Waymouth, R. M. Group 4 ansa–cyclopentadienyl–amido catalysts for olefin polymerization. Chem. Rev. 1998, 98, 2587–2598.CrossRefGoogle Scholar
  2. 2.
    Gibson, V. C.; Spitzmesser, S. K. Advances in non–metallocene olefin polymerization catalysis. Chem. Rev. 2003, 103, 283–315.CrossRefGoogle Scholar
  3. 3.
    Coates, G. W.; Waymouth, R. M. Enantioselective cyclopolymerization: Optically active poly(methylene–1,3–cyclopentane). J. Am. Chem. Soc. 1991, 113, 6270–6271.CrossRefGoogle Scholar
  4. 4.
    Schneider, N.; Prosenc, M. H.; Brintzinger, H. H. Cyclopenta[l]phenanthrene titanium trichloride derivatives: Syntheses, crystal structure and properties as catalysts for styrene polymerization. J. Organomet. Chem. 1997, 545, 291–295.CrossRefGoogle Scholar
  5. 5.
    Döhring, A.; Jensen, V. R.; Jolly, P. W.; Thiel, W.; Weber, J. C. Donor–ligand–substituted cyclopentadienylchromium(III) complexes: A new class of alkene polymerization catalyst. 2. phosphinoalkyl–substituted systems. Organometallics 2001, 20, 2234–2245.CrossRefGoogle Scholar
  6. 6.
    Busico, V.; Cipullo, R.; Kretschmer, W. P.; Talarico, G.; Vacatello, M.; Castelli, V. V. A. "Oscillating" metallocene catalysts: How do they oscillate. Angew. Chem. Int. Ed. 2002, 41, 505–508.CrossRefGoogle Scholar
  7. 7.
    Zhang, H.; Ma, J.; Qian, Y. L.; Huang, J. L. Synthesis and characterization of nitrogen–functionalized cyclopentadienylchromium complexes and their use as catalysts for olefin polymerization. Organometallics 2004, 23, 5681–5688.CrossRefGoogle Scholar
  8. 8.
    Hou, Z. M.; Kaita, S.; Wakatsuki, Y. Novel polymerization and copolymerization of ethylene, styrene, and/or butadiene by new organolanthanide–based catalysts. Pure Appl. Chem. 2001, 73, 291–294.CrossRefGoogle Scholar
  9. 9.
    Kaita, S.; Yamanaka, M.; Horiuchi, A. C.; Wakatsuki, Y. Butadiene polymerization catalyzed by lanthanide metallocenealkylaluminum complexes with cocatalysts: Metal–dependent control of 1,4–cis/trans stereoselectivity and molecular weight. Macromolecules 2006, 39,1359–1363.Google Scholar
  10. 10.
    Zhang, L. X.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. M. Cationic alkyl rare–earth metal complexes bearing an ancillary bis(phosphinophenyl)amido ligand: A catalytic system for living cis–1,4–polymerization and copolymerization of isoprene and butadiene. Angew. Chem. Int. Ed. 2007, 46, 1909–1913.CrossRefGoogle Scholar
  11. 11.
    Gao, W.; Cui, D. M. Highly cis–1,4 selective polymerization of dienes with homogeneous Ziegler–Natta catalysts based on NCN–pincer rare earth metal dichloride precursors. J. Am. Chem. Soc. 2008, 130, 4984–4991.CrossRefGoogle Scholar
  12. 12.
    Wang, D.; Li, S. H.; Liu, X. L.; Gao, W.; Cui, D. M. Thiophene–NPN ligand supported rare–earth metal bis(alkyl) complexes. Synthesis and catalysis toward highly trans–1,4 selective polymerization of butadiene. Organometallics 2008, 27, 6531–6538.Google Scholar
  13. 13.
    Pan, W.; Chen, H.; Sun, R.; Gong, D.; Jia, X.; Hu, Y.; Zhang, X. Highly 1,2 regio–and stereoselective polymerization of 1,3–butadiene initiated by iron catalysts with pyridinyl phosphate. Ind. Eng. Chem. Res. 2016, 55, 7580–7586.CrossRefGoogle Scholar
  14. 14.
    Cariou, R.; Chirinos, J.; Gibson, V. C.; Jacobsen, G.; Tomov, A. K.; Elsegood, M. R. J. 1,3–Butadiene polymerization by bis(benzimidazolyl)amine metal complexes: Remarkable microstructural control and a protocol for in–reactor blending of trans–1,4–, cis–1,4–, and cis–1,4–co–1,2–vinylpolybutadiene. Macromolecules 2009, 42,1443–1444.Google Scholar
  15. 15.
    Leicht, H.; Göttker–Schnetmann, I.; Mecking, S. Stereoselective copolymerization of butadiene and functionalized 1,3–dienes. ACS Macro Lett. 2016, 5, 777–780.CrossRefGoogle Scholar
  16. 16.
    Pan, L.; Zhang, K.; Nishiura, M.; Hou, Z. M. Chain–shuttling polymerization at two different scandium sites: Regio–and stereospecific "one–pot" block copolymerization of styrene, isoprene, and butadiene. Ange w. Chem. Int. Ed. 2011, 50, 12012–12015.CrossRefGoogle Scholar
  17. 17.
    Roitershtein, D. M.; Vinogradov, A. A.; Vinogradov, A. A.; Lyssenko, K. A.; Nelyubina, Y. V.; Anan’ev, I. V.; Nifant’ev, I. E.; Yakovlev, V. A.; Kostitsyna, N. N. Di–and triphenylacetates of lanthanum and neodymium. Synthesis, structural diversity, and application in diene polymerization. Organometallics 2013, 32, 1272–1286.Google Scholar
  18. 18.
    Leicht, H.; Göttker–Schnetmann, I.; Mecking, S. Stereoselective copolymerization of butadiene and functionalized 1,3–dienes with neodymium–based catalysts. Macromolecules 2017, 50, 8464–8468.CrossRefGoogle Scholar
  19. 19.
    Martinez–Arripe, E.; Jean–Baptiste–dit–Dominique, F.; Auffrant, A.; Le Goff, X. F.; Thuilliez, J.; Nief, F. Synthesis and characterization of bidentate rare–earth iminophosphorane o–aryl complexes and their behavior as catalysts for the polymerization of 1,3–butadiene. Organometallics 2012, 31, 4854–4861.CrossRefGoogle Scholar
  20. 20.
    Deacon, G. B.; Harika, R.; Junk, P. C.; Skelton, B. W.; White, A. H. Structural versatility in hydrated rare earth(III) 1,2–benzenedisulfonates. New J. Chem. 2007, 31, 634–645.CrossRefGoogle Scholar
  21. 21.
    Chen, X. L.; Lei, P.; Qiao, Q. L. Synthesis and characterization of some hydrous TPPTS Ln complexes (Ln = Sc, Y, La, Nd, Sm, Gd, Ho; and TPPTS = TRIS (m–sulfonatophenyl) phosphine). Polyhedron 1998, 17, 1381–1385.CrossRefGoogle Scholar
  22. 22.
    Kawada, A.; Yasuda, K.; Abe, H.; Harayama, T. Rare earth metal trifluoromethanesulfonates catalyzed benzyl–etherification. Chem. Pharm. Bull. 2002, 50, 380–383.CrossRefGoogle Scholar
  23. 23.
    WeÏwer, M.; Coulombel, L.; Dunach, E. Regioselective indium( III) trifluoromethanesulfonate–catalyzed hydrothiolation of non–activated olefins. Chem. Commun. 2006, 3, 332–334.CrossRefGoogle Scholar
  24. 24.
    Parac–Vogt, T. N.; Binnemans, K. Lanthanide(III) nosylates as new nitration catalysts. Tetrahedron Lett. 2004, 45, 3137–3139.CrossRefGoogle Scholar
  25. 25.
    Zhu, W. P.; Tong, X. W.; Shen, Z. Q. Ring–opening polymerization of e–caprolactone catalyzed by rare earth trifluoromethanesulfonate [Ln(OTf)3] catalysts. Chem. J. Chinese U. 2007, 28, 1186–1188.Google Scholar
  26. 26.
    Ren, C. Y.; Li, G. L.; Dong, W. M.; Jiang, L. S.; Zhang, X. Q.; Wang, F. S. Soluble neodymium chloride 2–ethylhexanol complex as a highly active catalyst for controlled isoprene polymerization. Polymer 2007, 48, 2470–2474.CrossRefGoogle Scholar
  27. 27.
    Kaita, S.; Doi, Y.; Kaneko, K.; Horiuchi, A. C.; Wakatsuki, Y. An efficient gadolinium metallocene–based catalyst for the synthesis of isoprene rubber with perfect 1,4–c/s microstructure and marked reactivity difference between lanthanide metallocenes toward dienes as probed by butadiene–isoprene copolymerization catalysis. Macromolecules 2004, 37, 5860–5862.CrossRefGoogle Scholar
  28. 28.
    Dai, Q.; Zhang, X.; Hu, Y.; He, J.; Shi, C.; Li, Y.; Bai, C. Regulation of the cis–1,4–and trans–1,4–polybutadiene multiblock copolymers via chain shuttling polymerization using a ternary neodymium organic sulfonate catalyst. Macromolecules 2017, 50, 7887–7894.CrossRefGoogle Scholar
  29. 29.
    Harrowfield, J. Structure and stereochemistry in ‘f–block’ complexes of high coordination number. VIII. The [M(unidentate)9] system. Crystal structures of [M(OH2)9] [CF3SO3]3, M = La, Gd, Lu Y. Aust. J. Chem. 1983, 36, 483–492.CrossRefGoogle Scholar
  30. 30.
    Wen, J.; Zhang, X.; Dai, Q. Synthesis of polybutadienes with controllable microstructure by a novel binary Nd(3–NBSO3)3/alkylaluminum catalyst system. Chinese J. Polym. Sci. 2015, 33, 475–480.CrossRefGoogle Scholar
  31. 31.
    Friebe, L.; Windisch, H.; Nuyken, O.; Obrecht, W. Polymerization of 1,3–butadiene initiated by neodymium versatate/triisobutylaluminum/ethylaluminum sesquichloride: Impact of the alkylaluminum cocatalyst component. J. Macromol. Sci. Part A Pure Appl. Chem. 2004, 41, 245–256.CrossRefGoogle Scholar
  32. 32.
    Quirk, R. P.; Kells, A. M.; Yunlu, K.; Cuif, J. P. Butadiene polymerization using neodymium versatate–based catalysts: Catalyst optimization and effects of water and excess versatic acid. Polymer 2000, 41, 5903–5908.CrossRefGoogle Scholar
  33. 33.
    Carbonaro, A., Ferraro, D. and Bruzzone, M., 1988, U.S. Pat., 4,736,001.Google Scholar
  34. 34.
    Oehme, A.; Gebauer, U.; Gehrke, K.; Lechner, M. D. The influence of ageing and polymerization conditions on the polymerization of butadiene using a neodymium catalyst system. Die Angew. Makromol. Chem. 1996, 235, 121–130.CrossRefGoogle Scholar
  35. 35.
    Hsieh, H. L.; Yeh, G. H. C. Mechanism of rare–earth catalysis in coordination polymerization. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 456–463.CrossRefGoogle Scholar
  36. 36.
    Annunziata, L.; Pragliola, S.; Pappalardo, D.; Tedesco, C.; Pellecchia, C. New (anilidomethyl)pyridine titanium(IV) and zirconium( IV) catalyst precursors for the highly chemo–and stereoselective cis–1,4–polymerization of 1,3–butadiene. Macromolecules 2011, 44, 1934–1941.CrossRefGoogle Scholar
  37. 37.
    Liu, B.; Wang, X.; Pan, Y.; Lin, F.; Wu, C.; Qu, J.; Luo, Y.; Cui, D. Unprecedented 3,4–isoprene and cis–1,4–butadiene copolymers with controlled sequence distribution by single yttrium cationic species. Macromolecules 2014, 47, 8524–8530.CrossRefGoogle Scholar
  38. 38.
    Appukuttan, V.; Zhang, L.; Ha, C. S.; Kim, I. Highly active and stereospecific polymerizations of 1,3–butadiene by using bis(benzimidazolyl)amine ligands derived Co(II) complexes in combination with ethylaluminum sesquichloride. Polymer 2009, 50, 1150–1158.CrossRefGoogle Scholar
  39. 39.
    Gong, D.; Wang, B.; Bai, C.; Bi, J.; Wang, F.; Dong, W.; Zhang, X.; Jiang, L. Metal dependent control of cis–/trans–1,4 regioselectivity in 1,3–butadiene polymerization catalyzed by transition metal complexes supported by 2,6–bis[1–(iminophenyl) ethyl]pyridine. Polymer 2009, 50, 6259–6264.CrossRefGoogle Scholar
  40. 40.
    Liu, J.; Fan, X.; Min, X.; Zhu, X.; Zhao, N.; Wang, Z. Synthesis of high cis–1,4 polybutadiene with narrow molecular weight distribution via a neodymium–based binary catalyst. RSC Adv. 2018, 8, 21926–21932.CrossRefGoogle Scholar
  41. 41.
    Iovu, H.; Hubca, G.; Simionescu, E.; Badea, E.; Hurst, J. S. Butadiene polymerisation using binary neodymium–based catalyst systems. The effect of catalyst preparation. Eur. Polym. J. 1997, 33, 811–814.Google Scholar
  42. 42.
    Iovu, H.; Hubca, G.; Racoti, D.; Hurst, J. S. Modelling of the butadiene and isoprene polymerization processes with a binary neodymium–based catalyst. Eur. Polym. J. 1999, 35, 335–344.CrossRefGoogle Scholar
  43. 43.
    Kwag, G. A highly reactive and monomeric neodymium catalyst. Macromolecules 2002, 35, 4875–4879.CrossRefGoogle Scholar
  44. 44.
    Furukawa, J. Mechanism of diene polymerization. Pure. Appl. Chem. 1975, 42, 495–508.CrossRefGoogle Scholar
  45. 45.
    Loughmari, S.; Hafid, A.; Bouazza, A.; Bouadili, A. E.; Zinck, P.; Visseaux, M. Highly stereoselective coordination polymerization of β–myrcene from a lanthanide–based catalyst: Access to bio–sourced elastomers. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2898–2905.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations